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Abstract  

Many bacteria inhabit thin layers of water on solid surfaces both naturally in soils or on 

hosts or textiles and in the lab on agar hydrogels. In these environments, cells experience 

capillary forces, yet an understanding of how these forces shape bacterial collective 

behaviors remains elusive. Here, we show that the water menisci formed around bacteria 

lead to capillary attraction between cells while still allowing them to slide past one another. 

We develop an experimental apparatus that allows us to control bacterial collective 

behaviors by varying the strength and range of capillary forces. Combining 3D imaging 

and cell tracking with agent-based modeling, we demonstrate that capillary attraction 

organizes rod-shaped bacteria into densely packed, nematic groups, and profoundly 

influences their collective dynamics and morphologies. Our results suggest that capillary 

forces may be a ubiquitous physical ingredient in shaping microbial communities in 

partially hydrated environments. 
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Introduction 

Many bacteria live in thin layers of water wetted to solid surfaces. In partially saturated 

soils, cells inhabit the liquid bridges that bind soil particles together [1, 2, 3, 4]. In plants, 

bacteria colonize the surfaces of leaves and flowers, where thin water films and threads 

can form [5]. In textiles, cells adhere to wetted fibers, with the thickness of the surrounding 

liquid film changing as the material hydrates or dries [6]. Laboratory experiments typically 

use hydrogels containing liquid media to study growth and motility of microorganisms.  

For nearly a century, substrate hydration has been recognized as a necessary and 

important factor in structuring the swarming behavior of flagellated bacteria [7, 8, 9, 10, 

11, 12, 13]. For such cells, local water availability sets an allowable range within which 

the flagella can operate and cells can thus move. Non-flagellated, surface-adherent 

bacteria have demonstrated a variety of other motility mechanisms, e.g. through pilus-

mediated twitching or focal-adhesion mediated gliding [14, 15, 16, 17]. Motility through 

these mechanisms also depends on water availability. For example, bulk twitching and 

gliding assays often need to be conducted in humid environments [15, 19, 21]. Recently, 

this link was more firmly established in Myxococcus xanthus where it was demonstrated 

that the wetting of surface heterogeneities affects cellular motility and aggregation [22]. 

Despite long-standing, albeit often tacit, knowledge that hydration affects the motility of 

surface-adherent bacteria, the mechanisms by which forces from the liquid affect these 

populations remain unknown.  

Previous work on colloidal particles has shown that interfacial forces from water can have 

substantial effects on the micron scales typical of bacteria. Particles partially immersed in 

a thin layer of liquid experience capillary forces due to the deformation of the liquid-air 

interface [23, 24]. For a single hydrophilic particle, capillary forces push it into the hydrated 

substrate and may increase adhesion to or friction with the surface [25, 26]. When the 

menisci of two particles coalesce, capillary forces typically produce an attractive 

interaction between the particles [23]. Here, we show that this liquid-mediated interaction 

strongly affects the motility of gliding bacteria and governs their collective behaviors.  
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Results 

Water menisci form around bacterial cells on hydrated substrates. 

We first sought to measure the wetting meniscus around a single cell. We spotted bacteria 

onto 1.5% v/v agarose hydrogels and imaged the resulting liquid-air interface around 

single cells with a laser-scanning confocal microscope (Keyence VK-X1000). This 

instrument provides both an image of the reflectance of the sample, from which cells can 

be identified, and the corresponding height field of the sample’s surface. We imaged the 

gliding bacteria M. xanthus and Flavobacterium johnsoniae, non-gliding Escherichia coli, 

and 1-µm-diameter polystyrene colloidal beads (Supplementary Table 1). In all cases, we 

observed a liquid meniscus surrounding the objects (Fig. 1a).  

For a hydrated substrate such as agarose, we modeled the meniscus profile ℎ(𝒓) =

ℎ(𝑥, 𝑦) by minimizing the energy of the wetting liquid with surface tension 𝛾 and an energy 

penalty for extracting water from the substrate due to the osmotic pressure difference 𝑃 

across the substrate surface (Fig. 1b). We computed the equilibrium height profile of the 

modeled water meniscus via numerical minimization of a total free energy 𝐹[ℎ(𝑥, 𝑦)] =

∫ (𝛾√1 + (𝜕𝑥ℎ)2 + (𝜕𝑦ℎ)
2

+ 𝑃ℎ) d𝑥 d𝑦 , assuming that the water meniscus completely 

wets the cell surface (Supplementary Sec. I.A). These results are in agreement with the 

measured height profiles around all samples tested (Fig. 1c). 

 The shape of a water meniscus varies with osmotic pressure. 

Our model predicts that the width of the water meniscus around the cell is controlled by 

the capillary length 𝑙𝛾 =
𝛾

𝑃
. Specifically, for an infinitely long cylindrical cell of radius 𝑅c, 

the non-zero principal curvature of the surrounding water meniscus is 𝑙𝛾
−1 =

𝑃

𝛾
, and thus 

its width scales with √𝑅c𝑙𝛾, which arises from the geometry of two tangent circles of radii 

𝑅c and 𝑙𝛾 (Supplementary Figs. 1 and 2, and Sec. I.B). 

To test this prediction for the meniscus width, we developed an apparatus to control the 

osmotic pressure difference 𝑃. Similar to devices for controlling water availability in model 

soils [27, 28], the apparatus works by connecting the agarose gel directly to a liquid 
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reservoir that, like the gel surface, is open to the atmosphere (Supplementary Fig. 3 and 

Sec. VI.B). The height of the gel surface (𝐻gel) relative to the height of the reservoir (𝐻res), 

∆𝐻 = 𝐻gel − 𝐻res , can then be used to apply a hydrostatic pressure to the gel Δ𝑃 =

𝜌w𝑔Δ𝐻 , where 𝜌w𝑔 = 9.8 kPa/m is the specific weight of water (Fig. 1d, and 

Supplementary Fig. 4). We set ∆𝐻 = 0 as the reference state for each condition and 

obtained the osmotic pressure, 𝑃0 ≈ 2 kPa, of this state by fitting the modeled water height 

profiles to those measured in experiment (Supplementary Fig. 5, Sec. I.C,D, and Table 

2). The osmotic pressure difference 𝑃 across the substrate surface is given by 𝑃 = 𝑃0 +

𝜌w𝑔∆𝐻, (Supplementary Fig. 6 and Sec. I.E). We varied ∆𝐻 and measured the meniscus 

shape around cells of variable size, shape, and aspect ratio. The surface tension of all 

media used in the experiments was measured by the pendant drop method 

(Supplementary Sec. VI.C and Table 3). We set 𝛾 = 66 mN/m when fitting the 

experimental profiles in simulation. As our model predicts, the width of the wetting 

meniscus, which correlates with the capillary length 𝑙𝛾 =
𝛾

𝑃
, becomes smaller when 𝑃 is 

increased due to the larger free-energy cost of extracting water from the substrate surface 

(Fig. 1e,f).  

Capillary forces facilitate the formation of cell groups. 

For an isolated cell, the lateral capillary forces around the cell balance one another. 

However, when the menisci of adjacent cells overlap with each other, the water profile 

around each cell becomes asymmetric. This gives rise to a lateral attractive capillary force 

between the cells (Fig. 2a). Higher osmotic pressures, 𝑃, corresponding to lower water 

availability, should lead to higher lateral forces but also smaller menisci and thus a shorter 

interaction range. We confirmed this intuition by coupling the free-energy model of water 

to an agent-based model of bacterial cells. We model the cells as horizontally oriented 

spherocylinders with radius 𝑅c and cylindrical length 𝑙c and compute the forces on the 

cells exerted by the simulated water menisci (Supplementary Figs. 7 and 8, and Sec. 

I.F,G). Using this model, we simulated the merging of two adjacent cells being pulled 

together by capillary forces for different values of the osmotic pressure (Fig. 2b,c).  

We next asked whether our model was sufficient to capture the merging dynamics of non-

motile M. xanthus cells. We consider the balance of forces and torques exerted on each 
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cell, including those from cell-water interaction, cell-cell steric repulsion, and cell-

substrate friction (Supplementary Sec. II). Following Copenhagen et al. [29], we model 

the friction between M. xanthus cells and the underlying substrate as anisotropic with 

smaller friction coefficient along the cell-body axis (𝜉∥) than perpendicular to it (𝜉⊥). We 

determined the values of these coefficients (Supplementary Table 2) by fitting the agent-

based simulations to the dynamics of an experiment in which non-motile M. xanthus cells 

deposited onto an agarose gel were pulled together, into a side-by-side configuration, by 

their overlapping menisci (Fig. 2d, and Supplementary Video 1). The fitted model 

recapitulates both the translational (Fig. 2e) and rotational (Fig. 2f) dynamics of these 

merger events, and supports the anisotropic friction proposed in ref. [29] (Supplementary 

Fig. 9). 

Similar rearrangements also occur for motile bacteria, giving rise to formation of pairs and 

larger groups when adjacent cells move near one another (Supplementary Video 2). 

Given the attractive capillary forces between adjacent cells (Supplementary Fig. 10), we 

reasoned that the strength of such forces would anti-correlate with the rate at which two 

motile cells would split apart from one another. Measurements of the splitting rate 

(number of events/total time tracked) of wild-type M. xanthus cell pairs across a range of 

capillary lengths confirmed this hypothesis (Fig. 2g,h). Similarly, for large groups, the 

magnitude of group shape fluctuations is inversely related to the strength of capillary 

forces (Supplementary Figs. 11 and 12). 

For non-motile but growing bacteria, we hypothesized that similar dynamics driven by 

capillary forces could account for the side-by-side alignment of daughter cells after 

division. To test this, we deposited exponentially growing but non-motile E. coli and F. 

johnsoniae on agarose pads and collected timelapse micrographs of pairs of daughter 

cells formed by the division of an isolated, single cell (Fig. 2i, left). Subsequently, we 

segmented images using a convolutional neural network and tracked individual daughter 

cells over time. As hypothesized, pairs of cells of both species exhibited similar dynamics: 

cells that were initially arranged end-to-end first slid sideways and then longitudinally to 

align in a side-to-side configuration. To quantify this process, we tracked the centroid-to-

centroid distance between pairs of cells, which first increased due to growth as the cells 
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slid sideways, and then decreased as the cells were pulled toward each other by the 

capillary force (Fig. 2i, right, and Supplementary Figs. 13 and 14).  

Capillary forces and cell motility lead to different phases of collective motion. 

We used the above data to calibrate an extended version of our agent-based model where 

cells self-propel by generating in-plane forces, 𝑭prop, along their long axis, and reverse 

directions stochastically with mean reversal time 𝜏r . Since the capillary force acting 

laterally on a cell can be on the order of 10 nN (Fig. 2b), much stronger than the forces 

generated by bacterial motility motors (10~100 pN)  [30, 31, 32], we explored how 

capillary forces might affect the collective dynamics of motile cells. We performed a series 

of simulations for motile but non-growing cells, fixing their density and aspect ratio while 

varying three dimensionless variables: a normalized reversal period 𝜏̃ =
𝜏r 

𝜏c
 where 𝜏c =

𝜉∥𝑙c
2

|𝑭prop|
 is the time it takes for a self-propelled cell to travel its body length, a normalized 

self-propulsion strength 𝐹̃ =
|𝑭prop|

𝑃𝑅c𝑙c
 where 𝑃𝑅c𝑙c  is the scale of the horizontal capillary 

force acting on a cell, and a normalized capillary length ℓ̃ =
𝑙𝛾

𝑅c
=

𝛾

𝑃𝑅c
 .  

For the simulation parameters we investigated, the collective dynamics are primarily 

determined by the cell-motility variables 𝐹̃ and 𝜏̃, with only a minor dependency on ℓ̃. 

When the self-propulsion force is much stronger than the capillary force, 𝐹̃ ≫ 1, the cells 

mainly interact with one another sterically and thus behave like a nematic gas (Fig. 3a, 

gas, and Supplementary Video 3). In the opposite limit 𝐹̃ ≪ 1, when capillary forces 

dominate the dynamics, groups of cells cannot split apart. The population thus rapidly 

coarsens into “droplets” of cells (Fig. 3a, droplets, and Supplementary Video 4). However, 

for intermediate regimes 𝐹̃ ~ 1, we observe dynamic cell groups which are capable of 

both merging and splitting. In this regime, the structure and dynamics of these groups are 

determined by the cell’s reversal period. For very long reversal times 𝜏̃  > 10 , polar 

clusters form (Fig. 3a, polar clusters, and Supplementary Video 5). At shorter reversal 

times 𝜏̃  ≲ 10, cells propelling in opposite directions can pass by each other but are 

typically unable to escape the range of capillary attraction before reversing their direction 

of motion. Here, quasi-one-dimensional streams form (Fig. 3a, streams, and 
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Supplementary Video 6). When the reversal time becomes shorter than the time for a cell 

to move the length of its body, the droplet phase is recovered (Fig. 3a, droplets). We 

identified these different phases by computing the cell-axis-aligned, equal-time spatial 

correlation 𝐶̃𝜌(𝛥𝒓, 𝑡) = 〈𝜌(𝒓, 𝑡)𝜌(𝒓 + 𝛥𝒓, 𝑡)〉𝒓/〈𝜌(𝒓, 𝑡)𝜌(𝒓, 𝑡)〉𝒓 of cell density 𝜌 (Fig. 3c) and 

using the mean and variance of these correlations to classify the dynamics on a phase 

diagram (Fig. 3e, and Supplementary Fig. 15 and Sec. III).  

To explore the phase diagram experimentally, we captured time-lapse micrographs of 

various strains of M. xanthus on agarose hydrogels filled with rich media (CTT) and 

maintained at constant osmotic pressure with the previously described device. We 

segmented the resulting images using a convolutional neural network, and used the 

resulting cell masks to compute the mean and variance of 𝐶̃𝜌(𝛥𝒓, 𝑡)  (Fig. 3b,d, and 

Supplementary Fig. 16) over 3-hour windows. To achieve 𝐹̃ ≫ 1, we used our device to 

reduce the osmotic pressure 𝑃 and flood the hydrogel surface. In this case, wild-type 

populations show qualitative similarity to the gas phase (Fig. 3b,d, and Supplementary 

Video 7). In the opposite limit, a non-motile strain of M. xanthus, corresponding to 𝐹̃ = 0, 

forms cellular droplets as predicted by our simulations (Fig. 3b,d, and Supplementary 

Video 8). Also consistent with the simulation results, wild-type cells form stable, elongated 

streams, while the hypo-reversing ΔfrzZ cells form polar clusters (Fig. 3b,d, and 

Supplementary Videos 9 and 10). These phases of nematic streams and polar clusters 

have also been reported in previous studies of M. xanthus  [33, 34, 35]. Overall, our 

experiments showed all the phases predicted by the simulations. 

Additional experiments using a mutant strain of M. xanthus lacking pili (pilA) did not 

reveal stable streams, suggesting that additional interactions may be necessary to 

maintain these structures in the wild-type [36, 37, 38]. Similar to the results of Anderson 

and Ordal [20] wherein gliding of flavobacteria was dependent on a high degree of water 

availability, experiments in F. johnsoniae revealed only “gas” and “droplet” phases with 

the population rapidly transitioning between the two as water was moved into or out of 

the gel (Supplementary Fig. 16).  

As would be expected for a “gas,” gliding cells on saturated hydrogels can move freely 

relative to their nearest neighbors and appear to do so in an unstructured manner 
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(Supplementary Figs. 15 and 16). Conversely, cells in “droplets” are unable to readily 

pass each other because they are bound together by strong capillary forces 

(Supplementary Figs. 17 and 18). Interestingly, both the streams and polar clusters allow 

the cells to be tightly packed into spatially segregated groups while also moving relative 

to their neighbors (Fig. 3f,g, and Supplementary Video 11). These features might be 

crucial for the large-scale collective cell movement involved in the development of M. 

xanthus colonies (see Discussion).    

Capillary forces influence the organization of bacterial populations. 

To demonstrate how capillary forces influence the organization of bacterial populations, 

we used our device to impose changes in water availability on populations of M. xanthus 

and F. johnsoniae (Fig. 4a, and Supplementary Fig.19, and Videos 12 and 13). We 

tracked changes in population structure by computing the Delaunay triangulation between 

cell centroids (Fig. 4b, schematic). The distribution of edge lengths reveals both the 

relevant length scale(s) in the population – typically the approximate intercellular and 

intergroup spacings – as well as their heterogeneity across the population. Due to the 

initially low water availability in the substrate, cells are packed into small, dense groups. 

We then used our device to gradually saturate the substrate with water. This caused the 

surface to flood and the groups to break up, giving rise to a gaseous phase with a single 

apparent peak in the distribution of Delaunay edge lengths (Fig. 4b). Subsequently 

lowering the water reservoir below the substrate surface reimposed low water availability 

as in the start of the experiment. This change in water availability forced the cells back 

into densely packed groups (Fig. 4a,b).  

Given the rod shape of individual cells, the packing into dense groups induces local 

nematic ordering (Fig. 4c). In the gas phase, nematic order is reduced as cells move in 

non-straight paths and only interact sterically for brief periods of time [39]. Our data shows 

that capillary attraction promotes dense cell packing and hence the emergence of nematic 

order in colonies of rod-shaped bacteria. 

To further explore this idea, we asked how the morphology of both motile and non-motile 

cell groups was affected by capillary forces. To quantify the degree of elongation of cell 
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groups, we calculated a stream index, 𝑆 =
1

√𝑛

∑ |𝑠𝑘(ℛ𝑖)|𝑛
𝑖=1

(∑ |ℛ𝑖|)1/2𝑛
𝑖=1

 where 𝑛 is the number of groups, 

|ℛ𝑖| is the area of the 𝑖th group, and |𝑠𝑘(ℛ𝑖)| is the length of the morphological skeleton 

of the 𝑖th group (Fig. 4d, schematic, and Supplementary Fig. 20 and Sec. IV). For both M. 

xanthus and F. johnsoniae, motile cell groups had higher stream indices than their non-

motile counterparts, M. xanthus ΔcglBΩpilA and F. johnsoniae ΔsprB (Fig. 4d, 

Supplementary Fig. 19). However, M. xanthus, whose cells exhibit periodic direction 

reversals, formed even more elongated structures than non-reversing F. johnsoniae, 

whose stream index was similar to that of the hypo-reversing ΔfrzZ mutant of M. xanthus 

(Supplementary Fig. 19). The stream indices of the reversing, non-reversing, and non-

motile cell groups are captured by simulations of a continuum model in the streams, polar 

clusters, and droplets phases, respectively (Fig. 4d and Supplementary Sec. IV). 

 

Discussion 

In total, our work suggests that lateral capillary forces promote the aggregation of 

terrestrial bacteria by condensing individual cells into tightly packed groups while 

allowing for relative motion of neighboring cells. These features allow motile bacterial 

cell groups to behave as active nematic liquid crystals, whose properties cells can 

exploit as part of their lifestyle [29, 40]. In M. xanthus, cells form collective groups to 

swarm, predate, and aggregate under different environmental conditions [41]. When 

nutrients are limited, topological defects of cell alignment in the starving swarm promote 

the formation of new cell layers [29], which stack on top of one another to form a 

nascent fruiting body [42]. While we focused on lateral motion in the current work, the 

capillary force also contains a strong vertical component (~100 nN on isolated cells) that 

pushes cells downward and may deform the underlying substrate. The same vertical 

capillary force opposes the extrusion of cells into new layers above the substrate, such 

that layer formation requires collective fluctuations in the vicinity of topological defects 

[40]. 

Nascent fruiting bodies are connected by quasi-one-dimensional streams [43, 44]. 

These streams may accelerate the growth of fruiting bodies by providing pathways that 
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guide cells to coalesce [35, 45, 46]. Our results indicate that capillary attraction may 

play a role in the developmental process by facilitating the population’s condensation 

into nematic phases and the formation of inter-fruiting body streams. In the future, we 

will further investigate how vertical capillary forces influence the three-dimensional 

structure and developmental dynamics of bacterial colonies. 

Our combined experimental and modeling results showed that water availability, which 

tunes the range and strength of capillary forces, controls the organization of bacterial 

colonies and gives rise to various collective phases formed by gliding bacteria on 

agarose hydrogels. Bacteria are known to produce surfactants that reduce the surface 

tension of the surrounding liquid [47, 48, 49], although whether or not this process is 

regulated and how it could affect the capillary forces we explored in this work remain 

unknown. More broadly, future work will be needed to understand how capillary forces 

affect bacterial growth, motion, and population morphology in more complex geometries 

such as those found in textiles and soil. 
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Figure 1 Water menisci around bacteria and colloidal particles on a hydrated substrate. (a) Measured 

height profiles around single bacteria and a 1 μm diameter polystyrene bead deposited onto an agarose 

hydrogel. (b) Schematic of the modeled water meniscus that results from the balance of surface tension 

(dark blue) and osmotic pressure difference P (light blue) across the surface of the hydrogel substrate 

(green meshwork). The model assumes that the water meniscus completely wets the surface of a cell 

(gray circle with black outline; cross-section). h denotes the height of water above the substrate surface 

and ∆x denotes the horizontal distance to the midline of the cell. See Methods for details. (c) Height 

profiles of the modeled wetting menisci. Scale bar is the same for all images and represents 1 μm. (d) 

Illustration of the experimental device used to control water pressure. A reservoir of media is connected to 

the bottom of the agarose hydrogel onto which cells are deposited for each experiment. The height 

difference, ∆H, between the top of the hydrogel surface and the top of the reservoir sets an additional 

hydrostatic pressure that tunes the net osmotic pressure difference across the hydrogel. (e) Water height 

profiles h(∆x), measured in the midplane perpendicular to the long axis of the cell, at the designated 

values of P. The reference value P0 is estimated by fitting the height profile at ΔH = 0, and P is inferred 

using the relation P = P0 + ρwgΔH. Circles with error bars indicate experimental measurements (mean +/- 

standard deviation). Solid curves indicate fits of simulation results. (f) Capillary lengths inferred from the 

height profiles of the wetting menisci at varying values of P. Different colors and symbols represent the 

designated bacterial species. Black dashed line indicates the line y = x. See Supplementary Information 

for details. 
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Figure 2 Capillary forces promote mergers and hinder separation of bacterial cells. (a) Cross-section 

schematics showing the forces exerted on non-motile cells. Color code as in Fig. 1b. Black arrows 

indicate normal forces exerted by either the substrate or the cells. Dark blue arrows indicate capillary 

forces. Pink arrows indicate frictional forces between the cells and the substrate. Gray arrows indicate cell 

velocities. Two nearby cells with overlapping water menisci (top) are pulled together by capillary forces 

(bottom). (b) Left: top-view schematic of two parallel cells at a distance, s. Color code as in a. Right: 

magnitude of the capillary force at varying distances s for the designated values of osmotic pressure, P. 

(c) Left: top-view schematic of two nearby cells with a fixed center-to-center distance and forming an 

angle 𝜃. Color code as in a. Right: magnitude of the capillary torque at varying angles for the designated 

values of osmotic pressure, P. The center-to-center distance is set to 5.1 μm. In b and c, forces and 

torques are computed for cells with radius Rc = 0.3 μm and length lc = 4.5 μm. (d) Water height profiles, 

overlaid on reflectance images of M. xanthus cells (cglBpilA) that merge due to overlapping wetting 

menisci. Scale bars: 1 μm. (e, f) Time evolution of (e) center-to-center distance s and (f) relative 

orientation angle 𝜃, as indicated for the two cell groups in d. Circles indicate experimental measurements 

and solid curves indicate fitted results of agent-based simulations. (g) Top-view schematics of the forces 

exerted on self-propelling cells for high osmotic pressure (top) and low osmotic pressure (bottom). Color 

code as in a. Purple arrows indicate self-propelling forces along cell’s long axis. (h) The rate at which 

pairs of motile wild-type M. xanthus cells separate apart, as schematized in g, increases with the 

measured capillary length. Error bars are boot-strapped standard deviation. (i) Stereotyped dynamics of 

non-motile, dividing cells due to capillary forces. Post-division pairs of cells undergo a period of end-on-

end growth before capillary forces trigger them to slide relative to each other. Example pairs are shown 

for E. coli and F. johnsonaie (sprB) and the centroid-to-centroid distance, relative to its largest value for 

each pair, is plotted on the right. Relative centroid-centroid distances are averaged over N=5 and N=10 

cells for E. coli and F. johnsonaie, respectively. Shaded regions represent mean +/- the standard 
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deviation of the experimental data. Black curves and red curves represent the simulation results with and 

without water, respectively. Model parameters used in e, f, and i are listed in Supplementary Table 2.  
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Figure 3 Capillary attraction and cell motility lead to multiple phases of collective cell organization. (a,b) 

Heatmaps of water-height profiles for typical snapshots of the designated phases in (a) simulations and 

(b) experiments. (c, d) Time-averaged steady-state spatial density autocorrelation for the designated 

phases in (c) simulations and (d) experiments. (e) A section of the phase diagram for simulated cells. 

Color code as in a. Phase boundaries are drawn by hand. The normalized capillary length is set to ℓ̃ =

100. (f, g) Snapshots of (f) simulation and (g) experimental timelapse in which adjacent cells in a stream 

are labeled by the same color at time t=0 min and tracked over time. Adjacent cells can slide relative to 

one another, allowing the pairs to move apart and exchange neighbors. In all panels, scale bars: 5 μm.  
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Figure 4 Water availability controls the organization of colonies of M. xanthus. (a) Experimental time 

series in which cells initially deposited onto an agarose pad are subjected first to increasing water 

availability until a gas phase is reached (snapshots 1-3). Hours later, water is drained from the substrate, 

and the colony goes back to forming tightly packed, nematically ordered groups and streams (snapshots 

4-6). Time points (1-6) are marked in b and c. (b) Kymograph of the probability density function (P) of 

Delaunay edge lengths over time for the time series shown in a. Schematic on the right demonstrates 

how edges (blue lines) are calculated for a small population of cells (gray). At early times and late times in 

the experiment, low water availability at the surface constrains cells into tightly packed, well-separated 

groups. At intermediate times, high water availability permits cells to be further spaced apart and 

homogenizes the population. (c) Strength of nematic order sn, calculated within groups of 8 nearest-

neighboring cells and averaged over the population at each time. Shaded regions indicate variance. 

Right: schematics showing a small population of cells with perfect nematic order (sn=1) or no order (sn=0). 

(d) Stream indices for wild-type M. xanthus, a hypo-reversing mutant of M. xanthus (frzZ), a non-motile 

mutant of M. xanthus (cglBpilA), and simulated streams, polar clusters, and droplets. Error bars for the 

experimental results are standard deviations for each corresponding mean calculated over N=25, 9, and 7 

frames taken from 2, 3, and 1 separate timelapses, respectively. Error bars for the simulation results are 
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standard deviations for each corresponding mean calculated over N=50 frames during the steady state of 

1 timelapse. Right: schematics showing populations that form streams (S > 1) or droplets (S < 1). 
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I. MODELING WATER MENISCI AROUND CELLS

A. A free-energy model for the water meniscus

Laser-scanning microscopy reveals that there are intensity halos around M. xanthus cells grown on agar and these

halos display continuously decreasing height from the centerlines of the cells toward the agar surface far from the

cells (main Fig. 1). Our main hypothesis is that these halos correspond to water menisci formed around the cells.

To account for the shape of the water meniscus, we propose a minimal model based on a free energy that takes

into account the surface energy of the air-water interface and the energy penalty of extracting water from the agar

substrate. Denoting by h(x, y) the height of water above the surface of the agar substrate, the total free energy of

the water is given by

F [h] = γ

∫ √
1 + |∇h|2 dxdy + P

∫
hdxdy, (S1)

where ∇ = (∂x, ∂y), γ denotes the surface tension of water, and P denotes the per-volume energy penalty of extracting

water out of the substrate, i.e., the osmotic pressure difference across the substrate surface (see Sec. I E for details).

Note that γ and P together yield a capillary length lγ = γ/P that controls the range of capillary interactions (see

Sec. IG). We assume that the equilibrium shape of the water meniscus h∗(x, y) minimizes the free-energy functional

Eq. (S1), subject to the constraint that the height of water cannot be lower than the upper cell surfaces zupper or the

substrate surface z = 0. To express this constraint mathematically, we next specify the geometry of the modeled cells.

We treat each cell as a spherocylinder with cap radius Rc and cylindrical length lc. The position of cell i is

determined by its center-of-mass coordinates (x
(i)
c , y

(i)
c , z

(i)
c ) and its orientation (n

(i)
x , n

(i)
y , n

(i)
z ). For simplicity, we

assumed that cells are parallel to the substrate surface and the surface is tangent to the cylindrical part of the cell,

i.e., z
(i)
c ≡ Rc and n

(i)
z ≡ 0. Thus, the position of each cell i is determined by its center-of-mass coordinates x

(i)
c and

y
(i)
c , and its orientation angle θ(i) = arccosn

(i)
x = arcsinn

(i)
y . The height profile of cell i’s upper surface is given by

z(i)upper(x, y) =


Rc +

[
R2

c − s2∥(x, y)
]1/2

, if |s⊥| < lc/2 and |s∥| ⩽ Rc,

Rc +
[
R2

c − d2+(x, y)
]1/2

, if s⊥ ⩾ lc/2 and d+ ⩽ Rc,

Rc +
[
R2

c − d2−(x, y)
]1/2

, if s⊥ ⩽ −lc/2 and d− ⩽ Rc,

0, otherwise,

(S2)

where s∥(x, y) = (x−xc) cos θ
(i)+(y−yc) sin θ

(i) and s⊥(x, y) = −(x−xc) sin θ
(i)+(y−yc) cos θ

(i) denote, respectively,

the coordinates of (x, y) along or perpendicular to the cell’s long axis, and d±(x, y) =
[
(x− xc ∓ lc cos θ

(i)/2)2 + (y −
yc ∓ lc sin θ

(i)/2)2
]1/2

denotes the distance from (x, y) to the ± ends of the cell. Therefore, the constraint on h can

be expressed as

h(x, y) ⩾ max({z(i)upper(x, y)}, 0). (S3)

B. Examples of equilibrium height profiles

We perform the constrained energy minimization described in Sec. IA numerically to solve for the equilibrium

height profiles. In the simulations, we vary the normalized capillary length ℓ̃ = lγ/Rc to change the width of the

water meniscus. To verify our simulation results, we consider two special cases below where analytical solutions can

be obtained.

Water meniscus around a 2D circle. We start by considering a case of reduced dimensionality in the plane y = 0.

We consider a 2D circular “cell” of radius Rc, whose center is located at x = 0, z = Rc. In this case, the total free

energy in Eq. (S1) is given by F [h(x)] = γ
∫
(
√

1 + (h′)2)dx + P
∫
hdx where we define f ′ ≡ df/dx for an arbitrary
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function f(x). The free-energy minimum is achieved when the functional derivative δF/δh = 0, which yields( h′√
1 + (h′)2

)′
=

h′′[
1 + (h′)2

]3/2 =
P

γ
= l−1

γ . (S4)

The solution of Eq. (S4) is a circular arc of radius lγ . Taking into account that the height profile of water must be

continuous, we obtain1

h∗(x) =


Rc +

√
R2

c − x2 0 ⩽ |x| ⩽ Rc sin θ
∗

lγ −
√
l2γ − [x− (Rc + lγ) sin θ∗]2 Rc sin θ

∗ ⩽ |x| ⩽ (Rc + lγ) sin θ
∗

0 |x| > (Rc + lγ) sin θ
∗

, (S5)

where θ∗ = arccos
lγ−Rc

lγ+Rc
. Our simulation results match closely with the analytical solution (Supplementary Fig. 1).

Water meniscus around a 3D sphere. A similar procedure as above can be performed to compute the shape of

the water meniscus around a 3D spherical “cell” of radius Rc whose center is located at x = 0, y = 0, z = Rc. Due to

polar symmetry, the water height profile h = h(r) is only a function of r = (x2 + y2)1/2. The free-energy functional

is given by F [h(r)] = γ
∫
2πr

√
1 + (h′)2dr + P

∫
2πrhdr, and the optimization δF/δh = 0 yields

1

r

( rh′√
1 + (h′)2

)′
=

1

lγ
⇒ rh′√

1 + (h′)2
=

r2

2lγ
+ c1, (S6)

where c1 is an integration constant. The explicit expression for the solution of Eq. (S6) is cumbersome and contains

multiple elliptical functions. Nevertheless, c1 can be determined from h′ = 0 at r = rmax ≡ argmin[h(r) = 0], and Eq.

(S6) can thus be rewritten as

u(r) ≡ − h′√
1 + (h′)2

=
1

2lγ
(r2max/r − r). (S7)

Indeed, the simulation results are in good agreement with this analytical expression (Supplementary Fig. 1).

C. Estimating the capillary length from the equilibrium height profiles

In this section, we discuss how to estimate the capillary length lγ from the measured height profile of the water

meniscus in experiment (Fig. 1). We measured the height profile h∗(d) in the midplane perpendicular to the long

axis of the cell, where d denotes the horizontal distance to the long axis. Note that for a spherocylindrical cell that

is located at xc = 0, yc = 0 and whose orientation angle is θ = π/2, we have h∗(d) ≡ h∗(x = ±d, y = 0).

As discussed in Sec. I B Water meniscus around a 2D circle, for an infinitely long cell, h∗(d) corresponds

a circular arc of radius lγ , and thus lγ can in theory be estimated from the radius of curvature Rκ of h∗(d), i.e.,

l̂γ = Rκ ≡
[
1 + (h′)2

]3/2
/h′′|h=h∗ . In practice, there are two problems: (1) calculating derivatives of a noisy

measurement h∗(d) can be unreliable, and (2) the experimental cells are not infinitely long. To address the first

problem, we measure the distance d1/2 at which h∗ drops below Rc/2 and estimate the radius of curvature Rκ to

be Rκ = d21/2/Rc assuming that Rκ ≫ Rc (see Supplementary Fig. 2a for the geometry). We further verified that,

for all the bacterial cells tested, the condition Rκ ≫ Rc is satisfied (main Fig. 1). To address the second problem,

we simulate the equilibrium height profiles for varying values of cell aspect ratio lc/(2Rc) and capillary strength

(PRc)/γ, and compute Rκ = d21/2/Rc for the simulated profiles (Supplementary Fig. 2b). We find that, indeed,

Rκ = lγ when lc/(2Rc) = ∞ and Rκ = lγ/αcorr (αcorr > 1) for finite lc/(2Rc). Thus, we infer the capillary length

from the experimental measurements using l̂γ = αcorrRκ (with αcorr obtained from Supplementary Fig. 2b) and ignore

the uncertainty of the correction factor αcorr for simplicity.

1 This expression only works for lγ ⩾ Rc. When lγ < Rc, i.e., the central angle θ∗ of the two circular arcs in Eq. (S5) become larger than
π/2, and both ± signs should be kept in front of the square-root terms.
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D. Model parameters

We estimate the model parameters in our model of water meniscus directly from experiment:

Cell length and radius: We estimate the cap radius Rc by half the maximal height measured in experiment.

The cylindrical length lc is determined from the bright-field images of bacterial cells. We choose Rc = 0.3 µm and

lc = 4.5 µm for M. xanthus cells, Rc = 0.4 µm and lc = 2.4 µm for E. coli cells, and Rc = 0.15 µm and lc = 2.7 µm

for F. johnsoniae cells. For the full simulation of M. xanthus cells, we set Rc = 0.3 µm and we draw lc from a uniform

distribution U [3.6 µm, 5.4 µm].

Water surface tension: The surface tension γ of the liquid media is measured experimentally. See Sec. VIC for

details. The values of γ are reported in Table 3.

Osmotic pressure: To estimate the values of P under different conditions, we assume that P = P0 + ρwg∆H,

where ρw denotes the mass density of water, g denotes the gravitational acceleration constant, ∆H denotes the height

difference between the gel surface and the water level of the syringe connected to the gel (Fig. 1d), and P0 denotes

the osmotic pressure difference across the gel surface at ∆H = 0. The value of P0 is determined by fitting the height

profiles of the modeled water menisci to those measured in experiments with ∆H = 0. We consider two fitting

procedures:

(1) We compare the 3D height profiles h(x, y) of the water menisci around N individual cells between experiment

and theory. For each individual cell i, we denote by h
(i)
exp(x, y) and h

(i)
sim(x, y) the experimental measurements and the

simulation results, respectively. Since the experimental cells are not perfect spherocylinders, we minimize the free

energy Eq. (S1) using the constraint

h
(i)
sim(x, y) ⩾

{
h
(i)
exp(x, y), if h

(i)
exp(x, y) ⩾ 3

4 max[h
(i)
exp(x, y)],

0, if h
(i)
exp(x, y) <

3
4 max[h

(i)
exp(x, y)]

(S8)

to obtain the simulated equilibrium water meniscus h
(∗,i)
sim . The fitting error is measured by the root-mean-square

height difference ϵh =
√
⟨(h(∗,i)

sim − h
(i)
exp)2Ωϵ

⟩ on the region Ωϵ = {(x, y)|h(i)
exp(x, y) <

3
4 max[h

(i)
exp(x, y)]}. We vary the

value of P0 and obtain the optimal fitting value P
(∗,i)
0 that minimizes ϵh. Finally, the value of P0 is determined by

P ∗
0 = 1

N

∑N
i=1 P

(∗,i)
0 and the uncertainty of P0 is given by σP0 =

√
1
N

∑N
i=1

[
P

(∗,i)
0 − P ∗

0

]2
.

(2) Alternatively, we compare the modeled and measured water height profiles in the midplane perpendicular to

the long axis of the cell (Fig. 1e). We average the measured height profiles over multiple cells at various distances d

from the cell midline to obtain h̄exp(d) ± σh
exp(d). We set Rc = max[h̄exp(d)]/2, and simulate the equilibrium height

profile h∗
sim(d;P0) with varying values of P0. To quantify the fitting error, we compute the negative log-likelihood

function L(P0) =
1
2

∑
d

[h∗
sim(d;P0)−h̄exp(d)

σh
exp(d)

]2
. Subsequently, the value of P0 is determined by P ∗

0 = argmin L(P0) and

the uncertainty σP0 satisfies L(P ∗
0 ± σP0) = minL(P0) + 1/2.

As shown in Supplementary Fig. 5, the two fitting procedures lead to similar estimations of P0. Specifically,

fitting the full 3D height profile yields P0 = 2.69 ± 0.61 kPa and fitting the midplane 2D height profile yields

P0 = 2.81± 0.29 kPa.

E. Additional notes on the osmotic pressure difference across the gel surface

In Sec. ID, we find that there is a nonzero osmotic pressure difference P0 across the gel surface even when ∆H = 0.

We hypothesize that there is a vertical osmotic pressure gradient across the gel due to evaporation –– the top of the gel

has a higher polymer volume fraction, and hence a higher osmotic pressure, than the bottom of the gel (Supplementary

Fig. 6a). In this subsection, we explore whether this gradient can account for a nonzero P0. Since the gel is able

to swell or shrink, we consider two configurations of the gel, one that represents the reference configuration and

one that corresponds to the current configuration. We denote by Z0 and z the vertical coordinates in the reference

configuration and the current configuration, respectively.
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Governing equations. Consider an infinitesimal horizontal slice of the gel that is located at [Z0, Z0 + dZ0] in the

reference configuration and at [z, z + dz] in the current configuration. Since the volume of polymers in this slice of

the gel is conserved, we obtain ϕ0dZ0 = ϕdz, where ϕ0 and ϕ denote, respectively, the volume fraction of polymers

in the reference and current configurations, and we assume ϕ0 to be independent of Z0 for simplicity. In addition,

the mass conservation of water yields ∂(∆Vw)/∂t = (J |Z0 − J |Z0+dZ0)S, where the volume of water in this gel slice

can be expressed as ∆Vw = SdZ0(ϕ0/ϕ− ϕ0), S denotes the surface area of the gel, and J denotes the flux of water.

In the current configuration, J is given by J = κ∂Π
∂z where κ denotes the permeability of the gel and Π denotes the

osmotic pressure of the gel. Introducing dz = ϕ0dZ0/ϕ into the expression for J , we obtain J = κ ∂Π
∂Z0

ϕ
ϕ0
. Using this

result, the continuity equation for the aqueous phase of the gel is given by

∂(ϕ0/ϕ)

∂t
= −κ

∂

∂Z0

( ϕ

ϕ0

∂Π

∂Z0

)
. (S9)

To close the equation, we use the Flory-Rehner theory to model the osmotic pressure of the hydrogel [1, 2], i.e.,

Π(ϕ) = −kT
vc

[
ln(1−ϕ)+ϕ+χϕ2

]
−G0ϕ

1/3, where the first term results from the free energy of mixing and the second

term results from the elastic energy of stretching the polymers. Here, kT
vc

denotes the thermal free energy density, χ

denotes the solvent-polymer interaction paremeter, and G0 is the shear modulus of the gel in the reference state. For

agarose gels, we assume χ ≈ 1/2 and obtain Π(ϕ) = kT
3vc

(ϕ3 − ϕ
8/3
eq ϕ1/3) where ϕeq = ( 3G0vc

kT )3/8 denotes the polymer

volume fraction of a freely swollen gel. Finally, we set the reference state ϕ0 = ϕeq for simplicity.

Boundary conditions. In experiment, the bottom of the gel is connected with a water reservoir, and evaporation

of water occurs at the top surface of the gel. To describe this experimental set up, we choose the following boundary

conditions: Π = C = ρwg∆H at the bottom of the gel Z0 = 0, and J = Jev at the top of the gel Z0 = L0. Here, C

can be changed by tuning ∆H in experiment, and Jev has been measured previously to be Jev = 20 nm/s [3].

Nondimensionalization. We define dimensionless variables ϕ̃ = ϕ/ϕ0, Π̃ = Π/Π0, t̃ = t/T0, and Z̃ = Z0/L0, where

Π0 = 1 kPa, T0 = 1 min, and L0 = 6 mm are the relevant scales for the experimental system. Upon non-dimensionalize

Eq. (S9), we derive

∂(ϕ̃−1)

∂t̃
= −K̃

∂

∂Z̃

[
ϕ̃
Q̃∂(ϕ̃3 − ϕ̃1/3)

∂Z̃

]
⇒ ∂ϕ̃

∂t̃
= K̃ϕ̃2 ∂

∂Z̃

[
Q̃(3ϕ̃3 − ϕ̃1/3/3)

∂ϕ̃

∂Z̃

]
, (S10)

where K̃ = κΠ0T0

L2
0

, Q̃ = ( kT
3vc

ϕ3
0)/Π0, and we have used Π̃ = Q̃

[
(ϕ/ϕ0)

3−(ϕ/ϕ0)
1/3

]
. Similarly, the boundary condition

for ϕ̃ can be derived to be: (1) Q̃(ϕ̃3− ϕ̃1/3) = C/Π0 ≡ C̃ at Z̃ = 0, and (2) K̃Q̃(3ϕ̃3− ϕ̃1/3/3) ∂ϕ̃

∂Z̃
= Jev

(L0/T0)
= 2×10−4

at Z̃ = 1.

Comparing with the experiment. In an experiment where the water reservoir is lowered by ∆H = 0.51 m,

corresponding to a change in C from C = 0 kPa to C = 5 kPa (similar to the procedure in main Fig. 4), the

system reaches the new steady state in 10–15 min and the gel shrinks by about 1%. To mimic this experimental

procedure, we started ϕ̃ at t̃ = 0 with the steady state profile ϕ̃(Z̃) at C̃ = 0, and simulated Eq. (S10) with C̃ = 5

to track the system’s dynamics of approaching the new steady state. We define P̃ (t̃) = Q̃(ϕ̃3(t̃) − ϕ̃1/3(t̃))|Z̃=1 as

the osmotic pressure difference across the gel surface, and we fit P̃ (t̃) with P̃ (t̃) = P̃0 + ∆P̃ (1 − e−t̃/τ̃ss) to obtain

the relaxation time τ̃ss. In addition, we also compute the steady-state gel thickness at C̃ = 0 and C̃ = 5 using the

expression L∞,C̃ = L0

∫ 1

0
ϕ̃−1dZ̃. We use the relative gel thickness α = L∞,5/L∞,0 and the relaxation time τss = τ̃ssT0

to compare the model to the experiment, yielding K̃ = 0.7–2.1 × 10−4 and Q̃ ≈ 182 (Supplementary Fig. 6b and

c). Finally, we use the fitted values of K̃ and Q̃ to estimate the steady state P̃ (or P ) for varying values of C̃ (or

C), corresponding to different values of ∆H in experiments. Our analysis leads to a nonzero P0 ≈ 2 kPa, which is

consistent with the value of P0 obtained from fitting the height profile. We also verify that P varies (approximately)

linearly with the height difference ∆H between the water level of the reservoir and the gel surface (Supplementary

Fig. 6d).
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F. Calculating the capillary force exerted on cells

We next consider the force exerted by the water meniscus on each cell, which we term the “capillary force”. We

consider a water meniscus that is in mechanical equilibrium with the cells and has a height profile of h∗(x, y). For an

infinitesimal surface element of the water meniscus that is in contact with a cell, we assume that the per-area force

exerted on the cell by this element is f(x, y) ≡ −f(x, y)N(x, y), where f denotes the magnitude of the force and

N = (− ∂xh
∗√

1+|∇h∗|2
,− ∂yh

∗
√

1+|∇h∗|2
, 1√

1+|∇h∗|2
) defines the local normal.

To compute the magnitude f(x, y), we consider a perturbation to the water meniscus u = δ(x, y)N(x, y) and

compute the free-energy change ∆F associated with this perturbation. First, according to the virtual work principle,

∆F = −
∫
f · udS =

∫
f(x, y)δ(x, y)dS =

∫
f(x, y)δ(x, y)

√
1 + |∇h∗|2dxdy, where dS denotes the infinitesimal

area in 3D and the integral runs over the surface where the water meniscus is in contact with the upper surface

of the cell. Additionally, the free-energy change can also be calculated directly using the free energy functional

F [h] = γ
∫ √

1 + |∇h|2dxdy + P
∫
hdxdy. The perturbed water height profile is given by hp(x, y) = h∗(x − ux, y −

uy) + uz ≈ h∗(x, y) − ux(∂xh
∗) − uy(∂yh

∗) + uz = h∗(x, y) + δ(x, y)
√

1 + |∇h∗|2. Thus, ∆F = F [hp] − F [h∗] ≈∫
δF
δh (h

p − h∗)dxdy =
∫

δF
δh δ(x, y)

√
1 + |∇h∗|2dxdy. Comparing the two expression for ∆F , we obtain

f(x, y) =
δF
δh

= −γ∇ ·
( ∇h∗√

1 + |∇h∗|2
)
+ P. (S11)

Introducing Eq. (S11) into the expression for f , we obtain the capillary force acting on the cell per 3D surface area.

If we define fcap to be the force per projected area dxdy, i.e., fcapdxdy ≡ fdS = f
√

1 + |∇h∗|2dxdy, then fcap is

given by

fcap =
√
1 + |∇h∗|2f =

[
− γ∇ ·

( ∇h∗√
1 + |∇h∗|2

)
+ P

]
(∂xh

∗, ∂yh
∗,−1). (S12)

The z component of Eq. (S12) indicates that the water meniscus exerts a downward force on the cells. However, in

the present work, we ignore the z component, assuming this is balanced by an upward force from the substrate, and

focus on the horizontal capillary force and torque acting on each cell.

Thus, the total horizontal capillary force and torque exerted on cell i can be calculated as

F (i)
cap =

∫
Ω(i)

[
− γ∇ ·

( ∇h∗√
1 + |∇h∗|2

)
+ P

]
∇h∗dxdy, (S13)

T (i)
cap =

∫
Ω(i)

[
− γ∇ ·

( ∇h∗√
1 + |∇h∗|2

)
+ P

]
[(x− xc)∂yh

∗ − (y − yc)∂xh
∗]dxdy, (S14)

where Ω(i) denotes the region where the water meniscus is in contact with cell i, i.e., Ω(i) = {(x, y)|h∗(x, y) >

Rc and h∗(x, y) = z
(i)
upper(x, y)} (see Eq. (S2)). In the simulations, we performed numerical integrals of Eqs. (S13) and

(S14) to compute the capillary force and torque. As a cross-check, we also perturbed the position and orientation of

the cell and calculated the force and torque from the change in the free energy of water, i.e.,

F (i)
cap,x =

F [h∗]−F [h∗|
x
(i)
c →x

(i)
c +∆x(i) ]

∆x(i)
, F (i)

cap,y =
F [h∗]−F [h∗|

y
(i)
c →y

(i)
c +∆y(i) ]

∆y(i)
, T (i)

cap =
F [h∗]−F [h∗|θ(i)→θ(i)+∆θ(i) ]

∆θ(i)
,

(S15)

where h∗|C denotes the new equilibrium height profile upon a change C in the position of the cell. The two methods

yield the same computational results (Supplementary Fig. 7). For the rest of our simulations, we used the first

integral-based method to calculate the capillary force and torque because it is more time efficient than the second

method.
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G. Additional notes on the magnitude and range of capillary force

To gain more insights into the magnitude and range of capillary forces, we consider a group of N cells and calculate

its per-cell capillary attraction ⟨Fcap⟩N by an infinitely large colony located a distance ∆ away (see Supplementary

Fig. 8). For a fixed number N of cells, we find that maximum ⟨Fcap⟩N occurs at ∆ = 0, and that the magnitude of

capillary attraction increases with the osmotic pressure of the gel P while the range of attraction decreases with P

as ∼ P−1/2. This scaling relation can be understood by considering the simple case of a water meniscus around a

2D circle (Sec. I B). Equation (S5) shows that the half width of the water meniscus is dwm = (Rc + lγ) sin θ
∗ where

θ∗ = arccos
lγ−Rc

lγ+Rc
. When lγ ≫ Rc, we derive that dwm ≈ lγθ

∗ ≈ 2
√

Rclγ , and thus dwm ∼ P−1/2 since lγ = γ/P .

Next, we set ∆ = 0 and look at how the maximum capillary attraction ⟨Fcap⟩N varies with the number of cells N ,

finding that it decreases with N as ⟨Fcap⟩N = ⟨Fcap⟩∞ +
⟨Fcap⟩1−⟨Fcap⟩∞

N . In particular, we find that ⟨Fcap⟩∞ scales

linearly with P . To gain some physical intuition for this relationship, we again turn to the simple case of the water

meniscus around a circular cell. We consider a chain of closely packed circular cells extending from x = −∞ to x = 0.

The water height profile follows Eq. (S5) for x ⩾ 0 and h ≈ 2Rc for x < 0 where cells are filled up. The capillary force

acting on the cell at x = 0 can thus be calculated from Eq. (S13) to be Fcap = 2γRc(1+
Rc

lγ
) Rc

Rc+lγ
≈ 2γR2

c/lγ = 2PR2
c

when lγ ≫ Rc.
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II. AGENT-BASED MODEL

A. Equations of motion

In this subsection, we summarize the different forces that we consider in the agent-based model, and list the

equations of motion for each cell.

Cell shape. As noted in Sec. IA, we consider spherocylindrical cells oriented horizontally. For simplicity, we

only consider the in-plane motion of the cells. Thus, unless otherwise specified, the vectors discussed below will be

two dimensional in the x − y plane. We denote by rc = (x
(i)
c , y

(i)
c ) the center-of-mass position of cell i, and we

define n
(i)
∥ = (cos θ(i), sin θ(i)) and n

(i)
⊥ = (− sin θ(i), cos θ(i)) to denote, respectively, the unit vectors parallel to and

perpendicular to the long axis of cell i.

Steric interaction between cells. For each pair of cells i and j, we compute the smallest distance dij between

the centerlines of the two cell cylinders. Denote by r(i,j) = r
(i)
c + s(i,j)n

(i)
∥ the coordinates of the point on cell i’s

centerline that is the closest to cell j’s centerline. Thus, the distance dij can be calculated by dij = |r(i,j) − r(j,i)|.
The magnitude of the repulsive force between cells i and j is modeled as Fij = B

2

[
1 − tanh(

dij−2Rc

dB
)
]
, where B and

dB denote the magnitude and range of steric interaction, respectively. Fij ≈ 0 if dij ≫ 2Rc + dB , i.e., when the cells

are not in contact with each other. The total steric force and torque acting on cell i are given by

F
(i)
steric =

∑
j ̸=i

Fij
r(i,j) − r(j,i)

dij
, (S16)

T
(i)
steric =

∑
j ̸=i

s(i,j)Fijn
(i)
∥ × r(i,j) − r(j,i)

dij
, (S17)

where the cross product of two-dimensional vectors f = (fx, fy) and g = (gx, gy) is defined by f × g = fxgy − fygx.

Friction between cells and substrate. Cell motion is opposed by friction from the substrate surface. We model

the friction as a viscous drag that opposes the motion of each infinitesimal segment of the cell cylinder’s centerline.

Denote by v
(i)
c = drc/dt and ω

(i)
c = dθ(i)/dt the translational and rotational velocity of cell i. The velocity of

the point r(i)(s) = r
(i)
c + sn

(i)
∥ on cell i is v(i)(s) = v

(i)
c + ω

(i)
c sn

(i)
⊥ . Assuming anisotropic friction coefficients in

the directions parallel to and perpendicular to the long axis of cell i, we derive the infinitesimal frictional force

dFfric acting on r(i)(s) to be given by dFfric(s) = −ξ · v(i)(s)ds = −(ξ∥n
(i)
∥ n

(i)
∥ + ξ⊥n

(i)
⊥ n

(i)
⊥ ) · (v(i)

c + ω
(i)
c sn

(i)
⊥ )ds =

−
[
ξ∥(v

(i)
c · n(i)

∥ )n
(i)
∥ + ξ⊥(v

(i)
c · n(i)

⊥ )n
(i)
⊥ + ξ⊥ω

(i)
c sn

(i)
⊥
]
ds. Thus, the total frictional force and torque acting on cell i

are given by

F
(i)
fric =

∫ lc/2

−lc/2

dFfric = −ξ∥lc(v
(i)
c · n(i)

∥ )n
(i)
∥ − ξ⊥lc(v

(i)
c · n(i)

⊥ )n
(i)
⊥ , (S18)

T
(i)
fric =

∫ lc/2

−lc/2

sn
(i)
∥ × dFfric = −

∫ lc/2

−lc/2

ξ⊥ω
(i)
c s2ds = − 1

12
ξ⊥l

3
cω

(i)
c . (S19)

Self-propelling force of each cell. The self-propelling force is assumed to be along the long axis of each cell, i.e.,

F (i)
prop = F

(i)
p0 χ

(i)n
(i)
∥ , (S20)

where Fp0 denotes the magnitude of self propulsion and χ = ±1 follows a dichotomous Poisson process with rate τ−1
r .

The cells do not generate self-propelling torques, i.e., Tprop = 0.

Capillary force acting on the cells. The capillary force and torque exerted by the water meniscus are discussed

in Sec. I F and are given by Eqs. (S13) and (S14).
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Equations of motion. Taken together, the balance of the above forces determine the equations of motion for the

modeled cells,

dr
(i)
c

dt
=

(n(i)
∥ n

(i)
∥

ξ∥lc
+

n
(i)
⊥ n

(i)
⊥

ξ⊥lc

)
· (F (i)

steric + F (i)
prop + F (i)

cap), (S21)

dθ(i)

dt
=

12

ξ⊥l3c
(T

(i)
steric + T (i)

cap). (S22)

Note that the dichotomous noise for reversal is the only source of noise in the system.

Growth of non-motile cells. To study how capillary forces influences the development of growing colonies, we

follow previous work [4] and model bacterial growth as elongation of modeled spherocylinderical cells, whose projected

area is given by Ac = πR2
c +2Rclc. Denoting by αg the areal growth rate, and introducing the expression for Ac into

dAc/dt = αgS, we obtain

dlc
dt

= αg(lc +
π

2
Rc). (S23)

Each modeled cell has an initial length of l0, elongates according to Eq. (S23) until it reaches a final length of

lm = 2l0+2Rc, and divides into two daughter cells. Cell division is modeled by replacing the mother cell at r
(m)
c with

two spherocylinders of length l0 at positions r
(m)
c ± (l0/2 + Rc)n

(m)
∥ with the same orientation n

(m)
∥ as the mother

cell.

B. Simulations and parameters

The cell positions and the equilibrium water height profile are updated iteratively. The equations of cell motion are

simulated using a forward Euler method with an adaptive time increment such that for every time step the maximum

displacement of any cell segment does not exceed 0.1Rc. The simulation parameters are chosen or determined as

follows:

Capillary force: As discussed in Sec. ID, the surface tension γ is measured to be γ = 66 mN/m. The osmotic

pressure P is varied between P = 2.8 kPa and P = 8.8 kPa.

Steric interaction: To capture the steric interactions between cells, we choose B = 8γRc, which is much larger than

typical capillary force and self-propelling force, to ensure that the modeled cells cannot penetrate into each other. We

set dB = 0.1Rc to ensure that the interaction is very short-ranged.

Friction coefficients: We estimated the coefficients of the anisotropic friction between the cells and the substrate

from an experiment in which two nearby non-motile cells/cell clusters are pulled together by capillary attraction (see

main Fig. 2). We fit the modeled merger dynamics to the experiment. The fitting error was calculated by comparing

the center-to-center distance d12 = |r(1)c − r
(2)
c | and the angle ϕ12 = θ(1) − θ(2) of the two cell clusters between

the model and the experiment. For each time point t, the fitting error is given by the root-mean-square-deviation

et =
[
(
dexp
12,t−dsim

12,t

L )2 + (
ϕexp
12,t−ϕsim

12,t

Φ )2
]1/2

where the superscripts exp and sim denote the quantities in experiment and

simulation, respectively, and we set L = 2.5 µm and Φ = 1 rad to be the characteristic scales for length and angle. The

total fitting error was calculated as
∑

t et. Finally, we varied the friction coefficient ξ⊥ and friction anisotropy
ξ⊥−ξ∥
ξ⊥+ξ∥

to

determine the optimal fitting parameters that minimize
∑

t et (Supplementary Fig. 9), which yielded ξ∥ = 80 Pa ·min

and
ξ⊥−ξ∥
ξ⊥+ξ∥

= 0.85.

Phase diagrams: To explore the collective dynamics in the model, we varied three dimensionless model parameters:

a normalized reversal period τ̃ = τr/τc where τc = ξ∥l
2
c/|Fprop| is the time it takes for a non-reversing free-running

cell to travel its cell body length, a normalized self-propulsion strength F̃ = |Fprop|/PRclc where PRclc is the scale

of the longitudinal capillary force acting on isolated cells, and a normalized capillary length ℓ̃ = lγ/Rc = γ/(PRc).
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Cell growth: The areal growth rate αg of bacteria was determined by tracking the total area covered by the cells

over time (Supplementary Fig. 13).

C. A toy model for the splitting of cell groups

In the presence of a water meniscus, a group of cells can split into two subgroups if they propel sufficiently strong

in opposite directions to overcome the opposing capillary force. We wondered how this capillary attraction depends

on the partition of the subgroups, which describes the number of cells in each subgroup. To explore this question, we

consider two subgroups with N1 and N2 cells that are aligned in the same direction but propel in opposite directions

(Supplementary Fig. 10). Since the equilibrium water meniscus experiences zero net force exerted by the cells, the

total capillary force exerted on the two groups must have the same magnitude F
(g)
cap but opposite directions. Assuming

that each cell has the same self-propelling force Fp0 and the cells in the same subgroup move at the same speeds v1
and v2, we derive the force-balance conditions for the two groups

F (g)
cap −N1Fp0 = N1ξ∥v1, (S24a)

N2Fp0 − F (g)
cap = N2ξ∥v2. (S24b)

Splitting occurs when v2 > v1, i.e., Fp0 > F
(g)
cap(1/N1 + 1/N2)/2. As shown in Supplementary Fig. 10, for a fixed

number of total cells N1 + N2, the effective per-cell capillary attraction 2F
(g)
cap(1/N1 + 1/N2) is the smallest when

N1 ≈ N2, suggesting that symmetric splitting of cell groups is favored. In addition, for a fixed number N2, the

effective per-cell capillary attraction on cells in group 1 decreases with increasing N1, as noted in Sec. IG.

D. Quantifying the elongation and splitting of cell groups

As illustrated in Supplementary Fig. 10 and discussed in Sec. II C, cells within a group can propel in the opposite

directions, which creates a force dipole that tends to either elongate the cell group when the capillary force is strong

or split apart the group when the capillary force is small.

To quantify the elongation of the cell group, we first consider a group of N = 10 cells with relatively small values of

F̃ < 1. The contour of the cell group is determined by the contour line of the water height profile h∗
w = Rc. We follow

previous literature [5] to analyze the deformation modes of the contour. Briefly, we first compute the center of all

points on the contour, defined as their average position weighted by the local curvilinear distance, and calculate their

polar coordinates (ri, θi) with respect to the center. Subsequently, we decompose the contour into Fourier modes, i.e.,

r(θ) = R
[
1 +

∑
m⩾1 an cos(mθ) +

∑
m⩾1 bm sin(mθ)

]
where R = 1

2π

∑
i
Ri+Ri−1

2 × (θi − θi−1) denotes the zero mode

component, and compute cm =
√

a2m + b2m to characterize the mode-m deformation of the contour (Supplementary

Fig. 11). Mode m = 1 corresponds to the translation mode of the contour and thus a1 = b1 ≡ 0 by our definition.

In our simulations, the dominant deformation mode of cell groups is mode m = 2, which corresponds to the elliptical

elongation of the contour (Supplementary Fig. 11a). To quantify the shape fluctuation of the cell groups, we compute

the fluctuation of mode m = 2, i.e., ⟨c2(t)2⟩t −⟨c2(t)⟩2t , finding that it increases with increasing reversal time τ̃ of the

cells and increasing self-propelling force F̃ (Supplementary Fig. 11b).

To quantify the splitting of the cell group, we consider a group of N = 10 cells with F̃ ∼ 1. We use the criterion

h∗
w ⩾ hcontour to determine the cell regions Gcell and track the number ncc of connected components in Gcell. The

splitting events are identified by changes in ncc from ncc = 1 to ncc > 1. The splitting rate of cell groups can be

determined from the inverse of the average waiting times in the ncc = 1 state. As shown in Supplementary Fig. 11c,

our simulations show that the splitting rate also increases with increasing reversal time τ̃ of the cells and increasing

self-propelling force F̃ .
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E. Capillary forces facilitate merger of growing colonies

Since water menisci should generally exist around bacterial cells grown on hydrated substrates, we wondered how

capillary forces might affect the development of growing but non-motile colonies. To explore this question, we imaged

E. coli colonies, which are known to be poorly motile on hard agar [6], and found that two adjacent colonies elongate

and expand preferentially toward each other (Supplementary Fig. 14). We hypothesized that the elongation of growing

colonies is due to the asymmetric capillary force acting on them. Specifically, the water meniscus between the two

colonies has a smaller slope than that in other regions, and thus the in-plane capillary force is smaller in the middle,

allowing the colonies to expand more easily toward each other. To test this hypothesis, we also simulated colony growth

in the presence of a water meniscus, and our simulation results are in quantitative agreement with the experiment.

To further verify our hypothesis, we simulated colony growth in the absence of capillary forces, finding that in this

case the adjacent colonies stay roughly circular and do not expand toward each other (Supplementary Fig. 14).
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III. CLASSIFYING AND QUANTIFYING DIFFERENT PHASES OF COLLECTIVE CELL DYNAMICS

A. Phase classification

Simulations of the agent-based model described in Sec. II yielded a range of collective dynamics when the normalized

parameters of water and cell motility are varied. Qualitatively, the simulated dynamics can be categorized into four

phases:

1. a “gas” phase in which cells are spatially distributed rather than packed together by the capillary force,

2. a “polar clusters” phase in which cells are clustered into small groups that move persistently over long distances

and constantly undergo merging and splitting events,

3. a “streams” phase in which cells self-organize into a quasi-one-dimensional structure, and

4. a “droplets” phase in which cells are packed together and trapped in cell groups that do not move persistently.

To quantify the collective dynamics of N cells, we compute the equal-time correlation function of cell density ρ

Cρ(∆r∥,∆r⊥, t) =
1

N

N∑
i=1

ρ(r(i)c )ρ(r(i)c +∆r∥n
(i)
∥ +∆r⊥n

(i)
⊥ ) (S25)

and normalize Cρ by its maximum Cρ(0, 0, t) to obtain C̃ρ(∆r∥,∆r⊥, t). The average and standard deviation of

C̃ρ(∆r∥,∆r⊥, t) with respect to time, denoted by A = ⟨C̃ρ⟩t and B =
√

⟨C̃2
ρ⟩t − ⟨C̃ρ⟩2t , characterize the morphological

and dynamical features of C̃ρ, respectively (main Fig. 3 and Supplementary Fig. 15a).

To classify the simulation results with different parameters in an unbiased way, we develop a measure of distance

between any pair of simulated dynamics, and use a standard clustering method to group different simulations into

four clusters (Supplementary Fig. 15b). We follow previous computer-vision literature [7, 8] and measure the pairwise

“distance” between the simulated dynamics using the distances of A and B in the Sobolev space. For arbitrary

matrices Xi and Xj , the Sobolev norm of order 1/2 is given by

sij(X ) ≡
[ 1

n(K)

∑
k∈K

(1 + |k|)1/2|xi − xj |2
]1/2

, (S26)

where xi and xj denote, respectively, the discrete Fourier transforms of Xi and Xj , and n(K) denotes the number of

discrete frequency vectors in the frequency domain K. We define the distance Dij between simulations i and j as

Dij =
[
s2ij(A) + (5sij(B))2

]1/2
where the factor 5 is chosen such that the terms containing sij(A) and s2ij(B) have

similar magnitudes. The clustering is performed using the WPGMA (Weighted Pair Group Method with Arithmetic

Mean) method and implemented in MATLAB. Finally, we handpick one representative simulation for each phase of

collective dynamics to verify and annotate the clustering results.

B. Phase quantification

As shown in main Fig. 3, for a fixed self-propelling force, the collective cell dynamics transition from the gas phase

when the cell-cell capillary attraction is low, to the streams and polar clusters phases when the cell-cell capillary

attraction is intermediate, and to the droplets phase when the cell-cell capillary attraction is high. The effect of the

capillary attraction on the collective cell dynamics manifests itself in a trade-off between cell mobility and cell-cell

adjacency. To quantitatively describe this trade-off, we compute the instantaneous cell speeds, normalized by the

average free-running speed |Fprop|/(ξ∥lc), and the cell-cell distances2, normalized by the average cell body length

lc, for the different phases. Our simulations show that both the cell speed and the cell-cell distance decreases with

2 Following previous work [4], we define cell-cell distance as the smallest distance between the centerlines of the cell cylinders.
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increasing magnitude of capillary attraction (Supplementary Fig. 17a,b). The streams and polar clusters phases

show similar distribution of cell-cell distances, but their collective dynamics are different – cells moving in quasi-1D

streams frequently slip past each other while cells moving in small polar clusters stay together for a relatively long

time. To capture this difference, we compute the cell-cell adjacency matrix Aij(t), where Aij is 1 if the distance

between cells i and j are smaller than 4Rc and 0 otherwise. The average autocorrelation function of this matrix

CA(∆t) ≡
∑

i ̸=j⟨Aij(t)Aij(t+∆t)⟩t/
∑

i ̸=j⟨Aij(t)Aij(t)⟩t describes the probability that a pair of adjacent cells remain

adjacent after time ∆t. The life time of adjacent cell pairs is the longest in the droplets phase, second longest in the

polar clusters phase, third longest in the streams phase, and the shortest in the gas phase (Supplementary Fig. 17c).

In the droplets phase where the self-propelling force of each cell is much smaller than the capillary force, entire

cell groups undergo collective translational motion. Intuitively, over time scales longer than the mean reversal time

τr of the cell, such group motion is diffusive, and the group diffusivity Dg should decrease with increasing number N

of cells in the group because the overall propelling force of the group
∑N

i=1 F
(i)
prop scales with

√
N while the overall

friction of the group scales (approximately) with N . To verify our intuition, we simulate the dynamics of cell groups

with varying cell numbers N in the droplet phase. We use the same thresholding method as in Sec. IID to determine

the cell regions and track the center-of-mass trajectories rg(t) of the cell groups. The mean squared displacement

(MSD) is subsequently computed as MSD(∆t) = ⟨|rg(t+∆t)−rg(t)|2⟩t. We obtain the group diffusivity Dg by fitting

a linear function Dg∆t to the MSD with a lag time ∆t > 3τr. Our analyses show that, when friction is isotropic, i.e.,

ξ⊥ = ξ∥, both the mean squared speed ⟨Vg⟩2 and the diffusivity Dg of the group scale inversely with N and they are

related by Dg = ⟨Vg⟩2τr (Supplementary Fig. 18). For anisotropic friction ξ⊥ > ξ∥, the relationship Dg = ⟨Vg⟩2τr
remains true. In this case, Dg and ⟨Vg⟩2 decrease with N more rapidly than N−1 (Supplementary Fig. 18) because

cells can align in different orientations in groups with large N and get pushed sideways, thus increasing the overall

friction and decreasing the group diffusivity and mobility compared to the case of isotropic friction.
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IV. CONTINUUM MODEL

A. Phase-field formulation

To describe the large-scale organization of cell groups in the presence of water, we study a minimal phase-field

model. Briefly, we consider groups of cells that self-propel in M pairs of opposite directions n
(i)
± with densities ρ

(i)
±

and velocities v
(i)
± . Since we are interested in the large-scale morphology of M. xanthus cell groups, we introduce a

phase field ϕ that tracks the region of cells. ϕ = 1 denotes regions filled with cells and ϕ = 0 denotes cell-free voids.

Thus, the mass conservation equation can be expressed as

∂t(ϕρ
(i)
s ) +∇ · (ϕρ(i)s v(i)

s ) = ϕτ−1
ρ

∑
r=±

N−1∑
j=0

W (j,i)
r,s ρ(j)r + qalign(ϕ, {ρ(i)s }) for s = ±, and i = 0, ...,M − 1. (S27)

Here, τρ denotes the rate of changing propulsion directions and W
(j,i)
r,s denotes the transition probability matrix. The

alignment term qalign describes the dynamics of cell alignment due to cell-cell and cell-meniscus interactions. To

model the nematic cell-cell alignment, we consider the local nematic tensor order parameter Q =
∑

i,s ρ
(i)
s Q

(i)
s =∑

i,s ρ
(i)
s (2n

(i)
s n

(i)
s − I), and an associated free energy,

Fnem[Q, ϕ] =

∫
K1

2
(2−Q : Q)2ϕdx+

∫
K2

2
|∇Q|2ϕdx, (S28)

where the first term favors local nematic ordering with a coefficient K1, and the second term penalizes gradient of

nematic order parameter with a coefficient K2. To capture the alignment with the boundary of water meniscus,

we consider an additional surface free-energy term with nematic symmetry Fsrf = K3

∫ ∑
i,s ρ

(i)
s (n

(i)
s · ∇ϕ)2dx. By

introducing the expression for Q into Eq. (S28) and taking the functional derivative with respect to ρ
(i)
s , we derive

that

qalign = −δFnem

δρ
(i)
s

− δFsrf

δρ
(i)
s

= 2K1ϕ(2−Q : Q)(Q : Q(i)
s ) +K2∇ · (ϕ∇Q) : Q(i)

s −K3(n
(i) · ∇ϕ)2. (S29)

Using the phase field ϕ, we derive the force-balance condition

ϕξv(i)
s = ϕsβn(i) −∇(ϕp) + fwater(ϕ), (S30)

where the effect of the water meniscus is described by fwater and is nonzero only at the boundary of cell regions.

In our agent-based model, we found that the water meniscus exerts an in-plane pressure on the periphery of a cell

group and the pressure is proportional to the curvature of the boundary, similar to the Laplacian pressure due to

surface tension (Supplementary Fig. 21). Thus, in the continuum model, we treat the cell population as 2D droplets,

and approximate the effect of water menisci by an equivalent liquid surface tension σ, which will be described below.

Finally, as described in previous works [9–11], the time evolution of ϕ follows

∂tϕ+ v̄ · ∇ϕ = Γ
[
ϵ∇2ϕ− ϵ−1G′(ϕ) + ϵκϕ|∇ϕ|

]
, (S31)

where the phase field ϕ is advected by the mean velocity v̄ ≡
∑

s=±
∑N−1

i=0 ρ
(i)
s v

(i)
s /

∑
s=±

∑N−1
i=0 ρ

(i)
s . We choose the

standard double-well potential G(ϕ) = 18ϕ2(1 − ϕ2) such that the bulk regions have either ϕ = 1 or ϕ = 0. Here, Γ

denotes the relaxation rate of the phase field, ϵ denotes the width of the boundary layer, and κ ≡ −∇ · ( ∇ϕ
|∇ϕ| ) denotes

the local curvature. Using the phase field ϕ, we express the surface force fwater as fwater = σ(ϵ∇2ϕ − G′(ϕ)/ϵ)∇ϕ

[11].

Choice of parameters: We simulate the above equations on a square domain [−10, 10] × [−10, 10]. We set the

phase-field parameters ϵ = 0.5 and Γ = 1. We set the scale of time, force, and density by setting ξ = 1, β = 1, and∑
s=±

∑M−1
i=0 ρ

(i)
s = 1, respectively. For simplicity, we study the case M = 3. We set the propensity of reversing

self-propelling directions to be the highest W
(i,i)
−s,s = 0.6, and we set the propensity of changing to other directions
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to be the same W
(j,i)
r,s |j ̸=i = 0.1. To reproduce the polar clusters, streams, and droplets observed in our agent-based

simulations, we set the alignment parameters to be K1 = 1, K2 = 0.01, and K3 = 1. The remaining parameters σ

and τρ are varied to explore how the strength of capillary force (relative to the self-propelling force β = 1) and the

cell reversal frequency influence the large-scale dynamics.

B. Numerical scheme

The numerical scheme for solving Eqs. (S27-S31) was described previously in detail [11]. Briefly, we employed an

isotropic finite-difference method to compute spatial derivatives on a discretized grid of 256× 256 points. Equations

(S27) and (S31) were solved using an Euler forward scheme with a fixed time increment ∆t = 2 × 10−3. To ensure

numerical convergence, a small diffusion term were introduced to Eq. (S27).

To solve the force-balance equation Eq. (S30), we separate the velocities v
(i)
s into two terms v

(i)
s ≡ u

(i)
s + w

(i)
s ,

where u
(i)
s = sβn(i)/ξ. Introducing this expression into Eq. (S30) and the incompressibility condition, we obtain

ϕξw(i)
s = −∇(ϕp) + fwater(ϕ), (S32a)

∇ ·
[ ∑
s=±

N−1∑
i=0

ρ(i)s w(i)
s

]
= −∇ ·

[ ∑
s=±

N−1∑
i=0

ρ(i)s u(i)
s

]
. (S32b)

Since Eq. (S32a) is independent of s and i, we look for solutions w
(i)
s ≡ w (∀s, i). Thus, w follows

ϕξw = −∇(ϕp) + fwater(ϕ), and ∇ ·w = g ≡ −∇ ·
[ ∑
s=±

N−1∑
i=0

ρ(i)s u(i)
s

]
. (S33)

Note that in deriving Eq. (S33), we have used the normalization
∑

s=±
∑N−1

i=0 ρ
(i)
s = 1.

Equation (S33) was solved iteratively using a semi-implicit Fourier-spectral method. In particular, we formally

rewrite Eq. (S33) as

ξ̃w − ν̃∇2w = −∇(ϕp) + fwater + (ξ̃ − ξϕ)w − ν̃∇2w ≡ −∇(ϕp) + F , (S34)

where we have introduced two positive constants ξ̃ and ν̃ to stabilize the numerical scheme, and we have grouped all

the non-pressure terms into F . Taking the divergence of Eq. (S34) and using ∇·w = g, we obtain −∇2(ϕp)+∇·F =

(ξ̃ − ν̃∇2)g. We denote by [f ]k =
∫
f(x)e−ik·xd2x the Fourier transform of an arbitrary function f(x). The Fourier

transform of the simplified equation leads to |k|2[ϕp]k + ik · [F ]k = (ξ̃ + ν̃|k|2)[g]k. Introducing this relation into the

Fourier transform of Eq. (S34), we obtain that (ξ̃ + ν̃|k|2)[w]k = [F ]k − kk
|k|2 · [F ]k − ik

|k|2 (ξ̃ + ν̃|k|2)[g]k. We solve for

w iteratively using the following recursion relation

{[w]k}m+1 = (ξ̃ + ν̃|k|2)−1
{
[F ]k − kk

|k|2
· [F ]k

}m

− ik

|k|2
[g]k, (S35)

where {}m denotes the expression evaluated at the mth iteration step (for a particular time step). We obtain {w}m+1

from the inverse Fourier transform of {[w]k}m+1, which is then used to update {F }m+1 in the next iteration step. The

iteration ended when max |{w}m+1 − {w}m| < 10−3 max{w}m+1. Finally, the pressure can be obtained by applying

inverse Fourier transform to [ϕp]k = − ik
|k|2 · [F ]k + (ξ̃/|k|2 + ν̃)[g]k(k ̸= 0).

C. Stream index

Simulations of the continuum model yielded two distinct morphologies of the cell populations: one consisting of

stream-like aggregates of cells, and one consisting of droplet-like aggregates of cells. Thus, we sought to develop a

metric to quantify the “stream-ness” of the overall morphology, which we term the “stream index” S. For simplicity,
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we define the cell regions as R ≡ {(x, y)|ϕ(x, y) > 0.5} using the phase field ϕ. To highlight the topological features

of R, we extract the skeletons sk(Ri) of all the connected components Ri in R (Supplementary Fig. 20). For an

arbitrary shape E , the topological skeleton sk(E) is defined as the ridges (i.e., curvature singularities) of the distance

transformation of E , which calculates the minimal distance of any point E ∈ E to the shape boundary ∂E . Note that

the length of skeleton |sk(E)| is zero for a circular shape, and |sk(E)| > 0 for an elongated shape. Thus, a dimensionless

quantity |sk(E)|/
√
|E| can be used to quantify the “stream-ness” of shape E , where |E| denotes the area of E . Finally,

for a structure R that contains n disconnected shapes Ri, we define the stream index S as S = 1√
n

∑n
i=1 |sk(Ri)|

(
∑n

i=1 |Ri|)1/2
where

the factor 1/
√
n is introduced such that n identical shapes have the same S as each individual shape. Our analyses

show that the S index defined as such is able to clearly distinguish between stream-like (S ⩾ 1) and droplet-like

(S < 1) morphologies (Supplementary Fig. 20).
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V. CELL CULTURE AND STRAINS

A. Cell Culture and Growth

All strains used in this study are listed in Supplementary Table 1.

M. xanthus was grown in 1% CTT media consisting of 10 g/L Peptone (Ovia), 1% v/v Tris-HCl buffer, and 0.1%

v/v 1 M KH2PO4 manually adjusted to pH=7.6. All cells were struck from frozen stocks onto 1.5% v/v agar/CTT

plates. The day before each experiment, single colonies were picked from plates and incubated in 20 mL of CTT,

shaking at 32◦C overnight. Cells were collected at an optical density, OD600 0̃.4. We then concentrated or diluted

cells to the desired cell density by centrifugation at 8000rpm for 5 minutes in a tabletop centrifuge (Eppendorf 5415D)

and subsequently resuspending the pellet in fresh CTT of the desired volume.

F. johnsoniae cells were grown in 1% CYE media, first from frozen stocks on 1.5% agarose/CYE plates. Single

colonies were selected and grown overnight in liquid CYE, shaking, at 26◦C. Prior to each experiment, overnight

cultures were back-diluted 1:100 in fresh motility media and grown shaking for 2 hours before the cells were spun

and resubmerged in fresh motility media. CYE media consists of 10 g/L Peptone (Ovia), 5 g/L yeast extract (BD),

8 mM MgSO4, and 10 mM Tris (pH=7.5). Motility media consists of 1 part CYE without MgSO4 (see above) and 2

parts water.

E. coli was grown first as single colonies on 1.5% v/v agarose/LB plates. Single colonies were selected and grown

overnight in liquid LB, shaking at 37◦C. Prior to each experiment, overnight cultures were back-diluted 1:100 in fresh

LB and grown shaking at 37◦C for 2 hours before the cells were transferred to an agarose pad for imaging.
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VI. EXPERIMENTAL DEVICE AND SETUP

A. Microscopy

All images presented were obtained on a Keyence VK-X1000 confocal microscope. A custom MatLab program

was used for microscope control and image acquisition. At each time, the microscope captures an image of (1) the

reflectance of the sample at each pixel and (2) the height of each pixel relative to the image’s minimum. This is done

by scanning through a finite axial range and determining, at each pixel, the optimal reflectance and its corresponding

height using a proprietary algorithm. Height images were corrected for surface tilt, see VIIA. For F. johnsoniae and

E. coli, the cells were not sufficiently discernable in the reflectance images to be labeled and segmented by our neural

network. Therefore, we also captured a color image of the cells at each time. This image by a similar scanning process

as used to acquire the reflectance and height images, except the light is passed to a CMOS camera chip instead of a

photodiode. A final image is constructed by determining, for each pixel, which point in the stack of collected images

is the most in focus (as determined by an undisclosed algorithm).

All timelapses were captured at a rate of 1-3 minutes per frame. At each point in time, the microscope was

automatically refocused and the appropriate scan range determined by either determining the range used in the

previous frame and adding a small “buffer” to ensure a complete scan or by an automatic range-determination

algorithm internal to the microscope. Lateral sample drift was corrected by post-processing, see Section VIIB for

details.

B. Device Description

We designed a custom device to control the osmotic pressure across the hydrogel substrate. The device works by

applying a hydrostatic head to the bottom of the gel. This hydrostatic head then serves as an additional pressure

on top of the typical osmotic pressure (gradient) that exists in any hydrogel exposed to air. To do this, a reservoir

of liquid media (or water) is connected directly to the gel. By moving the reservoir up or down relative to the gel,

a hydrostatic head is applied to the gel. This hydrostatic pressure acts in addition to the usual osmotic pressure at

the gel/air interface and thus directly modifies the water availability, and thus the cell wetting, at the surface. See

Supplementary Figs. 3 and 4.

All custom parts were made by laser cutting acrylic sheets of varying thickness (specified below, per part). Acrylic

sheets were purchased from McMaster-Carr and laser cut on a Universal Laser Systems VLC 3.60 laser cutter.

The base of the device consists of an elevated plate with a hole in the middle (Supplementary Fig. 3a). This is cut

from a single piece of 0.5”-thick acrylic. This middle hole is cut such that it does not penetrate through the plate,

but instead fits around and supports a male Luer lock (McMaster Cat. # ) that will penetrate completely through

the plate. The base is elevated by four 0.53” legs (0.52” squares cut from 0.5”-thick acrylic) that are glued to the

bottom of the base with acrylic glue (SciGrip IPS Weld-On # 3). Halfway along each outer edge, a through hole is

cut. Heat-set inserts (McMaster Cat. # 94459A320) for 8-32 screws were then fit into these through holes with a

soldering iron.

Placed atop the base is a support plate, consisting of a 0.25”-thick circular piece of acrylic with a through-hole cut

such that a male Luer lock can be press-fit into it. This plate should sit flush to the base when constructed properly.

A spacer ring that outlines this plate is then placed on top of it. The thickness of this spacer ring will determine the

thickness of the gel. For all experiments in this work, a 3 mm thick spacer was used. Finally, a thin plate (cut from 3

mm-thick acrylic) is placed on top. Crucially, this plate contains a 15mm opening in the middle, as well as four holes

near its outer edge that are to be lined up with the threaded holes in the base. The middle, 15 mm-diameter opening

in the middle of the plate is left exposed to air and is where the sample will be deposited and imaged. As such, its

area is a key determinant of how rapidly the gel loses water due to evaporation. We found that 15 mm-diameter was

wide enough to comfortably fit the nose of the objective close enough to sample such that it could be imaged while

not being so wide that the the additional hydrostatic head from the reservoir would be insufficient to keep the gel

hydrated over the course of long (multi-hour) times.

The device is assembled by stacking the components, as previously described (Supplementary Fig. 3). Finally, the

pieces are fastened together by pushing four 8-32 screws through the top plate through holes and into the inserts in

the base. Relevant dimensions for the device are shown in Supplementary Fig. 3c,d.
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After the pieces are fastened together, a syringe filled with media and connected to a fluid line (Masterkleer PVC

plastic tubing, McMaster Cat. # 5233K51) is connected to the Luer lock on the plate and filled completely such that

no air bubbles are in the line. Molten agarose gel is then poured into the top opening until it is completely filled. The

gel is then allowed to cool and thus, solidify. We note that while a small amount of agarose does go into the line, this

can be minimized (¡1mm depth into the gel) by pouring the gel at a temperature just above it’s melting temperature.

Once the gel has solidified, cells are pipetted onto the gel, the spot allowed to dry, and the device is transferred to

the microscope. Here, the syringe is disconnected from the fluid line and the line is reconnected to the reservoir.

As a reservoir, we used plungerless 10 mL syringes with female Luer locks screwed onto the end. The reservoir was

mounted to a rail connector that then ran along a piece of optical dovetail rail mounted perpendicular to the optical

table. After setting the reservoir height, we allowed the system to stabilize for 15 minutes before starting to image.

C. Measurement of Liquid Surface Tension

Surface tension for all media used was measured by the pendant drop tensiometry using a custom-built tensiometer.

The tensiometer consists of a Basler Ace acA3088-57uc camera equipped with a Computar MLH-10X close-up manual

zoom lens focused on a backlit, blunt-end dispensing syringe. Pendant drops were manually loaded into the syringe

and imaged once before being pushed out of the syringe and replaced with a new drop. Each trial consists of a single,

imaged drop. Images were processed using OpenDrop [12].

Measured surface tensions for all media used in this study is given in Supplementary Table 3.
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VII. IMAGE AND DATA ANALYSIS

All analysis was done in Python 3.9 [13] using the NumPy [14], SciPy libraries [15], and scikit-image [16] libraries.

Plots were generated using Matplotlib [17].

A. Image Height Correction

Height maps for all analyzed images were corrected for surface tilt. To do this, we first automatically identified

pixels corresponding to the underlying substrate and then fit them to a first or second order polynomial.

To identify the substrate, the reflectance image was converted to an 8-bit image and a local entropy filter was

applied using a diameter=30 pixel disk as a structuring element (Fig. 26c). The resultant image was then flattened

and the values histogrammed to generate a distribution of entropy values (Fig. 26d). Because (groups of) cells

exhibit greater local entropy due to their exhibiting an edge around the surface, the distribution of entropy values

was typically bimodal with one mode representing the typical (lower) entropy value of the surface versus the other

being higher and typically corresponding to the cells. We fit the resulting distribution to a 2 component Gaussian

mixture model and determined the threshold for calling a pixel part of the surface by multiplying the mean of the

smaller component by 1.1.

Heights for the list of resulting (x, y) pixel coordinates that are considered part of the underlying substrate were

then fit to a three-dimensional surface. We found that for all experiments, either a 1st (h(x, y) = ax + by + c) or

2nd (h(x, y) = ax2 + by2 + cxy + d were sufficient models of the underlying surface (R2 > 0.9, Fig. 26e). This fitted

function was then applied to all (x,y) coordinates to generate a representation of the substrate and subtracted off

from the original height map to generate a “corrected” map. This corrected map was used for all analyses.

B. Timelapse Drift Correction

To account for global sample drift over the course of long time series, images were aligned into a global coordinate

system for each time series. Subsequent analyses were conducted in this coordinate system. To do this, we first

calculated a relative shift between all pairs of adjacent frames by calculating the phase difference between the Fourier

transforms of these frames and finding the maximum value of the resulting cross power spectrum. See [18] for details.

These shifts are then cumulatively summed to yield a “global” shift for each frame, assuming that the first frame

is unshifted. The largest global shift also yields a sufficient amount of padding that is applied to all images such

that none of them are truncated upon shifting. Shifts are applied to each image by Fourier transforming each image,

multiplying the result by a the shift operator ei
−→αω where −→α is the desired shift and ω is spatial frequency, and then

inverse Fourier transforming the result.

C. Convolutional neural network-based cell segmentation

1. Network Architecture

We use a standard U-net architecture [19]. The contracting and expanding paths of the net consist of 5 convolutional

blocks, each corresponding to a single spatial scale. Each convolutional block consists of 2 convolutional layers with

ReLU activations, 3x3 pixel kernels, and implicit padding such that the output maintains the shape of the input.

Spatial downsampling in the contracting path is done by 2-dimensional maximum pooling such that the spatial

dimensions of the input are reduced by a factor of 2 after each pooling operation. In the expanding path, we use

bilinear interpolation to expand the spatial dimensions by a factor of two between spatial scales. All network weights

are initialized with Kaiming initialization [20].

For M. xanthus, the network takes as input both the laser intensity image and its corresponding height map, z-

scored with respect to the mean and standard deviation of the training set data. For F. johnsoniae and E. coli, the

RGB image collected at each time point is concatenated onto the two-channel laser intensity image and height maps.

For tracking single M. xanthus cells in groups, an additional dataset was generated similar to that for F. johnsoniae
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and E. coli wherein an RGB image of the cells was also collected. This 5 channel image is similarly z-scored with

respect to the mean and standard deviation of the training set data. The network outputs a multi-channel confidence

map that predicts, independently, the probability that each pixel does/not belong to either a cell or border pixel.

All code was written in PyTorch [21].

2. Training set generation

A ground truth dataset of cell masks was generated by manual annotation of 191 images for M. xanthus. For F.

johnsoniae, a ground truth dataset of 46 images was used. For E. coli, 19 images were included in the ground truth

dataset. For the dataset of M. xanthus cells with included RGB images, 52images were included. Cell masks were

manually annotated using either a custom Matlab GUI, or by manually drawing the masks on an iPad using the ibis

Paint app. First, the GUI (or iPad) was used to create an initial dataset consisting of matched pairs of cell masks and

their corresponding laser intensity and height images. This dataset was then used to train a preliminary version of the

cell segmentation network. The trained network was then used to predict segmentations on new images, which were

then manually corrected using a custom Matlab GUI before being added to the ground truth dataset. This ”human

in the loop” procedure was repeated until satisfactory network performance was reached.

A “cell border” class was added to the ground truth cell masks following the procedure in [22]. Briefly, cell masks

were dilated with a 2 pixel-radius disk and all pixels in the resulting mask that are not labelled as “cell” in the ground

truth are marked as “border.” We note that in our labeling, cells by definition must have at least a 1 pixel gap and

thus a border region always exists between 2 cells.

During training, this ground truth dataset was split 80/20 into training and validation sets.

3. Training details

Segmentation networks were trained using the Adam optimizer with initial learning rate 0.0005 and moment estimate

decay rates, β1, β2 set to 0.9, 0.999, respectively. Over the course of training, the learning rate was reduced by a factor

of 0.25 after the validation loss had reached a plateau for 100 epochs. To prevent overfitting, the network was trained

until the validation loss reached a plateau for 250 epochs (early stopping). We use dice-weighted cross entropy (Eqn.

S36) as a loss function where the cross entropy term was annealed (τ in the Eqn. S36) over the course of training

such that the final network was trained solely on the dice loss.

Loss =
2|σ(X) ∩ Y |
|σ(X)|+ |Y |︸ ︷︷ ︸

Dice

+τ [Y log(σ(X)) + (1− Y )log(1− σ(X))]︸ ︷︷ ︸
Cross Entropy

(S36)

To do this, we used a linear annealing schedule such that at each epoch, e the cross-entropy term was multiplied by

1−min(e/(max. epochs), 1).

Networks were trained on batches of 4 512x512 pixel crops, drawn randomly from the training set. During training,

the training set was augmented by random horizontal and vertical flips (pflip = 0.5), random rotations (± 15◦), and

random affine shears (± 15◦along both x- and y-axes).

Separate networks were trained for each species.

D. Tracking and Counting Cell Groups

1. Cell Group Detection

Groups of cells were detected by thresholding the (corrected) height images (see VIIA) such that all pixels above

a set threshold height were called as part of a group while all pixels below were marked as background. Groups were

then determined by labeling connected components in the thresholded image. Connected components smaller than

the average area of a single cell (100 pixels for M. xanthus) were discarded. Ideally, the height threshold used for

this determination would be a very small value (e.g. 1 nm) above the detected surface, which is by definition set as
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reference 0 nm. We found that doing so was not robust to experimental noise and surface heterogeneities while also

causing groups that split apart to briefly, apparently “re-merge” due to small height variations just after splitting. To

balance faithful group segmentation and robustness to such noise, we set the threshold to 1/2 the average cell height

(for M. xanthus, 250 nm).

2. Group Tracking

Groups were tracked over time by on a frame-by-frame basis, linking adjacent pairs of frames until a full time series

of tracks had been accumulated. To do so, we used the pixel masks generated by our group detection algorithm (see

VIID 1) and for each frame pair, constructed a bipartite graph where vertices represent labeled group masks and edges

connect the vertices of masks in adjacent frames that have a non-zero number of overlapping pixels. We chose an

optimal frame-to-frame matching of such masks by computing the maximum weight matching of the just-constructed

bipartite graph. Sometimes, such groups either split into two, smaller groups or merged with adjacent groups to

create a single, larger group. We maintained a “lineage tree,” that kept track of which groups were the product of

such events. Merge events are detected by allowing unmatched groups in the forward direction to their best match,

regardless of whether or not this matched group has already been matched to another group in the original frame.

Splitting events are detected by running the matching in reverse and repeating the procedure done to detect merges.

This tree was used when inferring the number of cells in each group (see VIID 3). To detect individual tracks within

these tree-structured graphs, we enumerated all straight paths in the graph by depth-first search. Starting from the

tree root, a consecutive string of vertices with only a single in- and out-neighbor were labeled as a track. When a

node with more than 1 out-neighbors was detected (corresponding to a split event), that node was called as being

a part of the current track while a new track was initiated at each out-neighbor. When a node with more than 1

in-neighbors was detected (corresponding to a merge event), the track was terminated at the current node. The search

was continued until all vertices were labeled as being part of a track.

3. Cell Counting in Groups

We found that using laser and height images, alone, was not of sufficiently high resolution to accurately segment

and track cells over time within groups3. To remedy this, we instead opted to simply “count” cells in tracked groups.

To do this, predicted cell masks were combined with the detected cell groups, yielding a list of tuples for each group

containing the frame number and the number of cells detected within the group at that frame.

We first calibrated the fidelity of these counts by detecting cell groups in our ground truth, manually labeled

dataset (see VIID 1). We then segmented the images using our convolutional neural network and compared the

detected number of cells in each group to the ground truth (Fig. 25a). We found that, for a given group size N ,

the average predicted size over all predicted groups was a good match to the ground truth (Fig. 25b, top) while the

variance of these predictions was underdispersed relative to a Poisson counting model (Fig. 25b, bottom). We found

that the distribution of predicted sizes P was well-described by a generalized, underdispersed Poisson distribution[23]:

pλ,w(C) =
λ(λ+ wC)C−1

C!
e−λ−wC (S37)

which has mean µ = λ
1−w and variance σ2 = λ

(1−w)3 . We calibrated the dispersion parameter, w, by finding the optimal

w that would allow us to accurately predict the ground truth by computing P = ⌈µ⌉ of the fitted distribution. We

found that w = −0.94 allowed us to perfectly predict the number of cells in groups of all sizes N ≤ 16 except for

N = 15 (Fig. 25c).

For cell groups that never merged or split with other groups, the number of cells in that group was inferred by

fitting the distribution of number of detected cells in each frame to Eqn. S37 with w = −0.94 and computing P = ⌈µ⌉
as was done in the calibration procedure, above. For cell groups that merged of split with other groups, we leveraged

the dependency structure implied by these events to better inform our estimation. At each merge/split event, we

3 Note that the data shown in Fig. 3e was taken using a high resolution scan as well as an accompanying RGB image (see VIA, VIIC)
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performed joint inference on the larger and two smaller groups by asserting that the count for the largest group (the

merged group or the group that splits apart), must be the sum of the two smaller ones. As was shown by Consul and

Jain [24], pλ0,w(C) = pλ1,w(C) + pλ2,w(C) = pλ1+λ2,w(C) and thus we can obtain all three λx parameters for the 3

groups (and then compute P = ⌈µ⌉ = ⌈ λ
1−w ⌉) by simultaneous fitting of all the data for all 3 groups.

E. Single cell tracking

1. Candidate cell enumeration

We developed a simple enumeration scheme in which labeled regions found by watershed segmentation of a segmen-

tation neural network’s output probability “image” that were in direct contact with other labeled regions are grouped

together from which a list of mutually exclusive candidate solutions is generated per-such-group. Direct contact was

established between potentially-adjacent regions by computing each region’s exterior boundary pixels and checking for

overlapping pixels between pairs of region borders. Exterior boundary pixels were calculated by morphological dilation

of each region followed by subtraction of the region’s original pixels. Groups of continuously touching regions4 were

labeled as such. For each of these groups, a list of mutually exclusive candidate solutions is generated. To generate

the list, we assume that the regions generated by the initial watershed segmentation cannot be further split to yield

valid regions. We further assume that each pair of touching regions could have come about through the aberrant

splitting of a single cell. We enumerate all such individual cases within a group along with all possible combinations

within which such a merge can exist alongside the other cells in said group. The above-described enumeration is then

done recursively until the group is merged into a single region. This scheme yields a list of all possible cells that could

have arisen from within the group, as well as a list of mutually exclusive combinations of cells that could have arisen

from the network output and watershed segmentation.

2. Non-motile pairs of E. coli & F. johnsoniae

To track post-division daughter cells in non-motile E. coli and F. johnsoniae, we first generated a series of predicted

cell probabilities using our convolutional neural network (see VIIC). At each frame, these probabilities were used to

generate a list of candidate cells using the algorithm described, above (see VII E 1). Simultaneously, candidate cell

groups were tracked (see VIID). Cell groups were then linked to candidate cell segmentations by detecting pixel

overlaps between the two sets of masks. At each frame and for each group, we checked whether that group contained

a candidate segmentation with exactly two cells and if so, included it in a running list of such frames for that group.

All such frames were then compiled and cells from adjacent frames in this sequence were linked to one another by

maximizing the total intersection over union of cell masks between the masks of these two frames. This maximization

was accomplished by treating the adjacent frame pairs as a bipartite graph with nodes representing cell masks and

edges representing the (negative) intersection over union value between the two masks and using minimum weight

matching.

Calculation of the relative centroid-to-centroid distance for these pairs (shown in Fig. 2i) was done by first extracting

the centroid of each cell mask at each frame and computing the Euclidean distance between them. This yields an

absolute distance between the two centroids. The sequence of such distances was then smoothed by a 3-frame rolling

mean filter for each pair of daughter cells (Fig. 27a). For each pair, the time at which the centroids were maximally

separated was found and set as a reference 0 (Fig. 27b). Finally, we divided all the absolute centroid-to-centroid

distances by the value of maximum separation to yield a relative centroid-to-centroid distance (Fig. 27c). Note that

in Fig. 2i, time was recalculated relative to that shown in Fig. 27c by setting the minimum value to be 0 instead of

the reference time to which all of the sequences were aligned.

4 Note that touching is not necessarily an all-to-all relation. If region A touches B and C but B and C do not touch, the resultant group
would include A, B, and C.
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3. Motile M. xanthus

Motile pairs of M. xanthus cells within a phase (as shown in Fig. 3e) were first manually annotated in a single

frame at the start of the time series. For each subsequent frame, all potential cell segmentations were enumerated

using the algorithm described, above (see VII E 1). These were then linked in time using a novel algorithm that solves

a constrained linear sum optimization problem across a series of frames.

F. Wetting Profile Measurement

To measure the capillary length of cells in experiment, we first isolated single cells (or pairs, as in Fig. 2) using

our group tracking and counting algorithm (see VIID 2). The contour of the “group mask” found by thresholding of

the height map was extracted and the major axis of an ellipse fitted to these contour pixel coordinates was extracted

by singular value decomposition of the contour pixel coordinates. To do this, the n contour pixel coordinates were

mean-centered and concatenated into a 2xn matrix and the singular value decomposition of this matrix was computed.

From this, we constructed a transformation that would take scalar values in the interval [-1,1] and map them onto the

major axis of the cell by taking the dot product of the matrix of left singular vectors, U , with the matrix Is where I

is the (appropriately-shaped) identity matrix and s is a vector of singular values and scaling the resulting matrix by√
2/n (Eqn. S38).

f =

√
2

n
U · (s I) (S38)

We used the resulting transform to generate points along the middle half — ± 1/4 of the major axis length from

the contour center, (x̄, ȳ) — by computing f([−0.5, 0.5]) + (x̄, ȳ). For each generated point along the major axis,

we generated a linearly-spaced sampling line along the direction perpendicular to the major axis at that point. We

sampled each point of this line by linearly-interpolating from the height map at the specified pixel coordinates. These

values were then accumulated and averaged by distance from the major axis to yield a single curve of height vs.

distance from major axis. This curve was then fit to a circular arc, as discussed in IC.

We note that fitting of a circular was unstable and often yielded invalid fits on our experimental data. For some

analyses (Fig. 22, 12), we fit the measured meniscus profile to an exponential decay (Eqn. S39 and extracted the

fitted decay length, ℓc.

h(x) = Ae−x/ℓc + c (S39)

This measurement shows the same qualitative relationship with osmotic pressure as that shown in Fig. 1f (Fig.

23).
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SUPPLEMENTARY TABLES

Species Strain Genotype Reference
M. xanthus DK1622 Wild-type [25]
M. xanthus DK10410 DK1622∆pilA [26]
M. xanthus SA3985 DK1622∆frzZ [27]
M. xanthus TM913 DZ2∆cglBΩpilA (TetR cassette insertion at mxan 5783) [28]
F. johnsoniae CJ1827 Wild-typea [29]
F. johnsoniae CJ1922 ∆sprB [29]
E. coli MG1655 Wild-type [30]

a This strain is a rpsL mutant of the usual F. johnsoniae wild-type strain UW101.

Supplementary Table 1: Strains used in this study.

Symbols Descriptions Values Notes
P0 Reference osmotic pressure difference across the gel surface 2.8± 0.3 kPa Fig. 1; M. xanthus
P0 Reference osmotic pressure difference across the gel surface 1.7± 0.3 kPa Fig. 1; F. johnsoniae
P0 Reference osmotic pressure difference across the gel surface 1.3± 0.2 kPa Fig. 1; E. coli
P0 Reference osmotic pressure difference across the gel surface 1.6± 0.1 kPa Fig. 1; polystyrene bead
ξ∥ Longitudinal friction coefficient 280 Pa·min Fig. 2e,f; M. xanthus
ϵ Friction anisotropy 0.85 Fig. 2e,f; M. xanthus
ξ∥ Longitudinal friction coefficient 393 kPa·min Fig. 2i; E. coli
ϵ Friction anisotropy 0.62 Fig. 2i; E. coli
ξ∥ Longitudinal friction coefficient 305 kPa·min Fig. 2e,f; F. johnsoniae
ϵ Friction anisotropy 0.09 Fig. 2i; F. johnsoniae

Supplementary Table 2: Model parameters obtained by fitting to experimental data.

Liquid Surface Tension (mean ± std. dev.), mN/mm No. Trials
Water 71.7± 1.9 10
CTT 64.2± 0.9 10
CTT + M. xanthus wild-type 66.6± 1.2 10
CTT + M. xanthus ∆frzZ 66.1± 0.9 10
LB 60.2± 1.1 6
Motility Media 66.1± 1.7 8

Supplementary Table 3: Measured surface tensions for all media used in this study.
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Supplementary Fig. 1. The shape of the water meniscus around a circular or spherical cell. (a) and (b) show
results for a 2D circular “cell”, and (c) and (d) show results for a 3D spherical “cell”. (a) Schematic of the 2D height
profile given by Eq. (S5). Color code as in main Fig. 1. Rc denotes the radius of the 2D circular “cell” and lγ denotes

the capillary length of the meniscus. ℓ̃ = lγ/Rc denotes the normalized capillary length. (b) Simulation (solid) and
analytical (dashed) results for the equilibrium height profile of the water meniscus around a 2D circular “cell”. (c)
Height profiles obtained from the simulations of a spherical “cell” satisfy Eq. S7. Solid and dashed lines indicate the
simulation and analytical results, respectively. See Sec. I B for details. (d) Simulation results for the equilibrium
height profile of water meniscus around a 3D spherical “cell”. In panels b –d, colors indicate the designated values
of ℓ̃.
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Supplementary Fig. 2. The midplane height profile varies with cell aspect ratio. (a) Schematic of the geometry
used to estimate the radius of curvature Rκ of the midplane water height profile. Color code as in main Fig. 1. See
Sec. I C for details. (b) The radius of curvature Rκ, normalized by cell radius Rc, plotted against normalized capillary

length ℓ̃ = lγ/Rc = γ/(PRc) at the designated cell aspect ratios. Black dashed line indicates Rκ = lγ .

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 2, 2024. ; https://doi.org/10.1101/2024.05.28.596252doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.28.596252


31

Supplementary Fig. 3. (a) 3d view of the base plate. Note the middle cutout has a lower lip that is used to
support the outer edge of the Luer lock that will connect to the reservoir. (b) Exploded side view of the device, with
all pieces shown in the order of their assembly. (c) Top view of an assembled device with a gel, with outer radii for
the inner through hole and the top plate, itself, shown. (d) Side view schematic of the top part of the device, with
relevant dimensions for all pieces shown.
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Supplementary Fig. 4. Cartoon showing the hydrostatic pressure control device and its basic operating principle.
A plate with a hole is connected to a reservoir of water (or liquid media). The gel is placed on top of the plate,
directly coupling it to the reservoir. By moving the reservoir up or down relative to the top of the gel surface, a
hydrostatic head is applied to the bottom of the gel. This head then acts on top of the osmotic pressure inherent to
the gel, either “pushing liquid into” or “pulling liquid out of” the gel.
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Supplementary Fig. 5. Fitting the 3D and 2D height profiles of the water menisci yield similar results. (a, b)
The osmotic pressure difference P0 is determined by fitting the 3D (a) or 2D (b) height profiles of the modeled water
menisci to those measured in experiments. Top panels show the experimental measurements and middle panels show
the simulation results with the optimal fitting parameters P ∗

0 . Bottom panels show the fitting errors at varying values
of P0. In a, each column represents an individual cell and the fitting error is measured by the root-mean-square height
difference between the model and the experiment. In b, the height profile is measured in the mid-plane perpendicular
to the cell body axis, and the fitting error is measured by the negative log-likelihood of the fitting. See Sec. ID for
details. (c) Bar plot for the fitted values of P0. Fitting the 3D and 2D height profiles yield P0 = 2.69± 0.61 kPa and
P0 = 2.81± 0.29 kPa,respectively.
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Supplementary Fig. 6. Water evaporation leads to a osmotic pressure gradient across the gel. (a) Relative gel

thickness α and (b) the relaxation time τss of the model (Eq. S10) at varying values of K̃ and Q̃. See Sec. I E for
details. White curve in a denotes α = 0.99. White curves in b denote τss = 5 min and τss = 15 min, respectively.
White stars show the intersection points between the curve in a and the two curves in b, which determine the range
of values for K̃ and Q̃ in experiment. (c) The osmotic pressure difference P across the gel surface at varying height
differences ∆H between the surface of the gel and the water level of the reservoir. The top and bottom curves
represent, respectively, the results for the parameters indicated by the left and right stars in a and b. Black dashed
line indicates a slope of 1.
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the capillary force exerted on the cell. The force can be computed from (a) a force integral over the region where the
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See Sec. I F for details. (c) Comparison between the force calculated using the method shown in a (denoted by Fa)
and the force calculated using the method shown in b (denoted by Fb). The forces are normalized by γRc. For

reference, the dashed line shows Fb = Fa. Colors indicate the designated values of the normalized capillary length ℓ̃.
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Supplementary Fig. 8. Characterizing the magnitude and range of capillary attraction. (a) Illustration of the
simulation setup. A group of N cells is positioned a distance ∆ away from an infinitely large colony. The average
capillary force acting on each cell is denoted by ⟨Fcap⟩N . (b) Capillary attraction ⟨Fcap⟩N , normalized by γRc,

at varying distance ∆ and normalized capillary length ℓ̃ = γ/(PRc) for N = 5. Gray denotes that ⟨Fcap⟩N = 0.

White dashed curve indicates ∆/Rc ∼ (ℓ̃)1/2. (c) Capillary attraction ⟨Fcap⟩N , normalized by γRc, at varying cell

number N and normalized capillary length ℓ̃ (color) for ∆ = 0. Circles indicate simulation data, and dashed curves
indicate ⟨Fcap⟩N = ⟨Fcap⟩∞ + (⟨Fcap⟩1 − ⟨Fcap⟩∞)/N . (d) Capillary attraction ⟨Fcap⟩∞, normalized by γRc, at

varying normalized capillary length ℓ̃ = γ/(PRc) for ∆ = 0. Circles indicate simulation data, and the gray dashed

line indicates ⟨Fcap⟩∞ ∼ ℓ̃−1.
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Supplementary Fig. 9. Fitting friction coefficients for M. xanthus cells. Fitting error of the merger dynamics
between simulation and experiment at varying friction coefficient ξ∥ and friction anisotropy ϵ (see Sec. II B). Star
denotes the optimal fitting values.
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(g)
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(g)
cap(1/N1+1/N2)/2 indicates the

minimal propelling force for the two subgroups to split up. (b) Effective capillary attraction F
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Supplementary Fig. 11. Elongation and splitting of a cell group. (a) Power spectrum cm of contour deformation
for the cell group shown in the inset. Deformation modes m = 2, 3, and 4 are illustrated in the inset. See Sec. IID for
details. (b) Mode 2 fluctuation, defined as ⟨c22⟩− ⟨c2⟩2, and (c) splitting rate of a 10-cell group at varying normalized

reversal period τ̃ and normalized self-propelling force F̃ . In b and c, error bars represent standard deviations of 5
replicate simulations. In c, the dashed lines and circles indicate that the cell group does not split over the course of
the simulation.

Supplementary Fig. 12. Power spectrum of contour deformations for small groups of cells vary with capillary
length. Power spectrum of contour deformations for groups of size N = 5 M. xanthus cells, measured at different
capillary lengths. Decreasing capillary length further confines the group, causing reduced fluctuations.
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Supplementary Fig. 13. Fitting the areal growth rate of E. coli colonies. Area covered by cells as a function of
time. Circles indicate experimental measurements and the dashed line indicates an exponential fit with the designated
growth rate.

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 2, 2024. ; https://doi.org/10.1101/2024.05.28.596252doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.28.596252


41

6 8 10 12
25

50

100

200

a

0
Time (h)

2 4 6
25

50

100

200

C
el

l a
re

a 
(μ

m
2 )

Growth rate = 0.3915 h-1

Time (h)

C
en

tro
id

 d
is

ta
nc

e 
(μ

m
)

C
ol

on
y 

w
id

th
 (μ

m
)

0 1 2
12

16

20

a

b

c

d

e

f

Time (h)

0 1 2
22

24

26

28

30

0.4

0.5

0.6

0.7

0.8

Parallel
Perpendicular

0 1 2
22

24

26

28

30

0.4

0.5

0.6

0.7

0.8

g

h

i

Eccentricity

Time (h)

Experiment Simulation: with water Simulation: without water

0 1 2
12

16

20

0 1 2
12

16

20

Supplementary Fig. 14. Capillary forces facilitate merger of growing E. coli colonies. The growth dynamics of two
adjacent colonies are compared between (a–c) experiment, (d–f) simulation with water, and (g–i) simulation without
water. (a,d,g) Snapshots of the colonies at t = 0 (left) and t = 2 h (right). (b,e,h) Time evolution of the centroid
distance (blue) and average eccentricity (green) of the colonies. (c,f,i) Time evolution of the average colony widths
in the directions parallel (red) and perpendicular (yellow) to the centroid-centroid connecting line.
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Supplementary Fig. 15. Classification of the simulated collective dynamics. (a) Heatmaps showing root-mean-

square variation of the normalized density correlation function C̃ρ in time for the designated phases of collective
dynamics. Scale bars: 3 µm. Plots correspond to main Fig. 3c,d. (b) The WPGMA dendrogram of the simulated
collective dynamics. See Sec. III A for details. Scale bar indicates a distance of 0.05. Arrowheads indicate the four
select examples shown in panel a.
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Supplementary Fig. 16. Density correlations for each collective phase found in all species studied. All examples
shown were manually selected from representative experiments. Groups of two rows, one corresponding to the mean
(µ) and the other the standard deviation (σ) of the density correlation function described in III B are given for each
species. Scale bars: 5 µm.
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Supplementary Fig. 17. Different phases of collective dynamics display a mobility-adjacency trade-off. Box plots of
(a) normalized cell speed and (b) cell-cell distance for the designated phases. Whiskers range from the 5th percentile
to the 95th percentile. Boxes range from the 25th percentile to the 75th percentile. Horizontal bars inside the boxes
denote the median values. (c) The average autocorrelation function of the cell-cell adjacency matrix (defined in
Sec. III B) for the designated phases. The simulation time is normalized by the time τc = ξ∥l

2
c/|Fprop| it takes for

a non-reversing free-running cell to move over one cell body length. We varied three dimensionless parameters in
our simulations: a normalized reversal period τ̃ = τr/τc, a normalized self-propulsion strength F̃ = |Fprop|/PRclc
where PRclc is the scale of the longitudinal capillary force acting on isolated cells, and a normalized capillary length
ℓ̃ = lγ/Rc = γ/(PRc). The simulation parameters are: (1) ℓ̃ = 103.5, F̃ = 10, and τ̃ = 10 for the gas phase, (2)

ℓ̃ = 102.5, F̃ = 1, and τ̃ = 102 for the polar clusters phase, (3) ℓ̃ = 102.5, F̃ = 1, and τ̃ = 1 for the streams phase, and

(4) ℓ̃ = 102, F̃ = 0.3, and τ̃ = 3 for the droplets phase.
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Supplementary Fig. 18. Group diffusivity decreases with increasing group size in the droplet phase. Group
diffusivity Dg versus (a) the number N of cells in the group and (b) the mean squared velocity ⟨V 2

g ⟩ of the group.
Gray and black denote simulations with isotropic and anisotropic friction, respectively. Error bars represent standard
deviations of 5 replicate simulations. Red dashed lines denote Dg ∼ N−1 in a and Dg ∼ ⟨V 2

g ⟩ in b.
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Supplementary Fig. 19. Water availability influences the organization of colonies of F. johnsoniae. (a) Experimen-
tal time series in which cells initially deposited onto an agarose pad are subjected first to increasing water availability
until a gas phase is reached (snapshots 1–3). Hours later, water is drained from the substrate, and the colony goes back
to forming tightly packed, nematically ordered groups and streams (snapshots 4–6). Time points (1-6) are marked
in b and c. (b) Kymograph of the probability density function (P) of Delaunay edge lengths over time for the time
series shown in a. Schematic on the right demonstrates how edges (blue lines) are calculated for a small population
of cells (gray). At early times and late times in the experiment, low water availability at the surface constrains
cells into tightly packed, well-separated groups. At intermediate times, high water availability permits cells to be
further spaced apart and homogenizes the population. (c) Strength of nematic order sn, calculated within groups of
8 nearest-neighboring cells and averaged over the population at each time. Shaded regions indicate variance. Right:
schematics showing a small population of cells with perfect nematic order (sn = 1) or no order (sn = 0). (d) Stream
index values for wild-type F. johnsoniae and a non-motile mutant (∆sprB). Error bars are standard deviations for
each corresponding mean calculated over N=28 and 5 frames taken from 3 and 1 separate timelapses, respectively.
Plots correspond to main Fig. 4.
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Supplementary Fig. 20. Quantifying the large-scale morphologies of cell populations. (a–f) Typical snapshots of
the cell populations described by the continuum model with varying parameters (Sec. IV). White and gray denote
voids and cell regions, respectively. Black curves indicate the skeletons of the cell regions as defined in Sec. IVC.
Simulation parameters are: (a) σ = 1, τρ = 10, (b) σ = 1, τρ = 102, (c) σ = 1, τρ = 104, (d) σ = 4, τρ = 101, (e)
σ = 20, τρ = 104, (f) σ = 20, τρ = 101. (g) Stream indices for the corresponding simulations in panels a–f. Data are
represented as mean ± std with respect to time for each simulation. In panels a–c, we set K1 = 1, K2 = 0.01, and
K3 = 1. In panels d–f, we set K1 = K2 = K3 = 0. See Sec. IV for details.
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Supplementary Fig. 21. The in-plane capillary force acts as an Laplace pressure at large scales. (a) Schematic of
the agent-based simulations. Gray denotes cell regions bounded by interfaces of curvature κ. Blue denotes the water.
Blue arrows denote the in-plane pressure p exerted on the cells. Rc denotes the cap radius of each cell. The left and
right panels show the top view schematics for κ < 0 and κ > 0, respectively. The middle panel shows a close-up cross
section. (b) Normalized pressure p/γ at varying normalized curvatures κRc for the designated parameter ℓ̃ = 40.
Note that p denotes a 2D pressure, defined as force per unit length, and hence has the same unit as γ. Circles denote
simulation results, and the dashed line indicates a linear fit p/γ = α1κRc + α0 with fitting parameters α1 = 0.433
and α2 = 0.05.
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Supplementary Fig. 22. Speed vs. measured capillary length for single, motile M. xanthus cells.
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Supplementary Fig. 23. Exponential fits to measured meniscus profiles are anti-correlated with applied hydrostatic
pressure. Single cells of the indicated species were deposited onto 1.5% v/v agarose pads and their wetting menisci
measured (Capillary Length, ℓc, y-axis on all graphs) at varying levels of applied hydrostatic pressure (∆Pressure,
x-axis on all graphs).
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Supplementary Fig. 24. Calibration of the distribution of predicted counts for fixed group size. (a) Camera (RGB)
image of dense groups of F. johnsoniae cells on an agarose pad, overlaid with the corresponding instance segmentation
from our neural network. Region shown in (b) and (c) is shown with the white box. (b,c) Highlighted region of the
original image (b) and the corresponding instance segmentation (c) for the region shown, boxed in (a). (d) Laser
reflectance image of dense groups of M. xanthus cells on an agarose pad, overlaid with the corresponding instance
segmentation from our neural network. Region shown in (e) and (f) is shown with the white box. (e, f) Highlighted
region of the original image (e) and the corresponding instance segmentation (f) for the region shown, boxed in (d).
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Supplementary Fig. 25. Representative segmentation results for F. johnsoniae and M. xanthus. (a) Heatmap
indicated the fraction of all predicted counts for groups of size N (x-axis). (b) Linear regressions of the mean (top)
and variance (bottom) of predicted counts for groups of size N (x-axis). Note that if the predicted counts were
Poisson-distributed, we would expect the slope of the variance vs. ground truth regression to be 1. Thus, we conclude
that counts are underdispersed. (c) Histograms of predicted cell counts for each collection of ground truth groups of
size N (indicated in the top-right corner of each graph) up to groups of size N = 16. Red lines are fits to a generalized
Poisson distribution [23] with fixed w=-0.94.
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Supplementary Fig. 26. Procedure for correcting Keyence height images for sample tilt and surface unevenness.
(a) Example uncorrected height height map overlaid on its corresponding reflectance image. Image is of small groups
and single cells of M. xanthus. (b) (a) but with the corrected height map overlaid. (c) Output of entropy filtering the
reflectance image of (a). (d) Histogram of entropy values from (c), with fit of the distribution of entropy values to a 2
component Gaussian mixture model (black, solid line). Black, dashed lines are the fitted means of the 2 components.
Dashed red line is the threshold value, below which corresponding pixels are called as part of the “surface.” (e) Fit
(solid surface) of raw height values (black points, subsampled 1:1000 from original data).
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Supplementary Fig. 27. Calculation of relative centroid-to-centroid distance for non-motile cell pairs. (a)
Smoothed traces of absolute centroid-centroid distance between pairs of cells. Each line represents a single pair
of daughter cells. (b) Traces are aligned such that time t = 0 min. corresponds to the time at which the centroids are
maximally-separated. (c) Relative centroid-centroid distance is calculated by dividing the distances in (b) by their
value at t = 0 min.. The curve shown in Fig. 2i was computed by averaging, at each time, the data shown here.
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SUPPLEMENTARY VIDEOS

Supplementary Video 1. Movie for the time series shown in Fig. 2d, showing the merger of non-motile M. xanthus
cells due to capillary attraction.

Supplementary Video 2. Movie showing merging and splitting of motile M. xanthus groups. Colored regions are
groups of cells marked as a single groups. Overlaid numbers are the detected number of cells in that group.

Supplementary Video 3. Movie showing an example of simulated cells in the “gas” phase. Simulation parameters
are ℓ̃ = 103.5, F̃ = 10, and τ̃ = 10. Color bar is the same as in main Fig. 3.

Supplementary Video 4. Movie showing an example of simulated cells in the “droplets” phase. Simulation
parameters are ℓ̃ = 102, F̃ = 0.3, and τ̃ = 3. Color bar is the same as in main Fig. 3.

Supplementary Video 5. Movie showing an example of simulated cells in the “polar clusters” phase. Simulation
parameters are ℓ̃ = 102.5, F̃ = 1, and τ̃ = 102. Color bar is the same as in main Fig. 3.

Supplementary Video 6. Movie showing an example of simulated cells in the “streams” phase. Simulation
parameters are ℓ̃ = 102.5, F̃ = 1, and τ̃ = 1. Color bar is the same as in main Fig. 3.

Supplementary Video 7. Movie showing an example of M. xanthus cells in the “gas” phase.

Supplementary Video 8. Movie showing an example of M. xanthus cells in the “droplets” phase.

Supplementary Video 9. Movie showing an example of M. xanthus cells in the “polar clusters” phase.

Supplementary Video 10. Movie showing an example of M. xanthus cells in the “streams” phase.

Supplementary Video 11. Movie for the time series in Fig. 3f, showing neighbor exchange in the “stream” phase.

Supplementary Video 12. Movie for the time series shown in Fig. 4a, showing the large-scale morphologies of M.
xanthus cells upon changes in water availability.
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Supplementary Video 13. Movie showing the large-scale morphologies of F. johnsoniae cells upon changes in
water availability.
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